Advertisement

One Knowledge Graph to Rule Them All? Analyzing the Differences Between DBpedia, YAGO, Wikidata & co.

  • Daniel Ringler
  • Heiko PaulheimEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10505)

Abstract

Public Knowledge Graphs (KGs) on the Web are considered a valuable asset for developing intelligent applications. They contain general knowledge which can be used, e.g., for improving data analytics tools, text processing pipelines, or recommender systems. While the large players, e.g., DBpedia, YAGO, or Wikidata, are often considered similar in nature and coverage, there are, in fact, quite a few differences. In this paper, we quantify those differences, and identify the overlapping and the complementary parts of public KGs. From those considerations, we can conclude that the KGs are hardly interchangeable, and that each of them has its strenghts and weaknesses when it comes to applications in different domains.

References

  1. 1.
    Carlson, A., Betteridge, J., Wang, R.C., Hruschka Jr., E.R., Mitchell, T.M.: Coupled semi-supervised learning for information extraction. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 101–110 (2010)Google Scholar
  2. 2.
    Färber, M., Ell, B., Menne, C., Rettinger, A., Bartscherer, F.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semant. Web (2016, to appear)Google Scholar
  3. 3.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia-A large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6(2), 167–195 (2013)Google Scholar
  4. 4.
    Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)CrossRefGoogle Scholar
  5. 5.
    Nentwig, M., Hartung, M., Ngonga Ngomo, A.C., Rahm, E.: A survey of current link discovery frameworks. Semant. Web 8(3), 419–436 (2017)CrossRefGoogle Scholar
  6. 6.
    Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)CrossRefGoogle Scholar
  7. 7.
    Pellissier Tanon, T., Vrandečić, D., Schaffert, S., Steiner, T., Pintscher, L.: From Freebase to Wikidata: the great migration. In: Proceedings of the 25th International Conference on World Wide Web, pp. 1419–1428 (2016)Google Scholar
  8. 8.
    Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Cham (2014). doi: 10.1007/978-3-319-11964-9_16 Google Scholar
  9. 9.
    Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge unifying WordNet and Wikipedia. In: 16th International Conference on World Wide Web, pp. 697–706 (2007)Google Scholar
  10. 10.
    Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Commun. ACM 57(10), 78–85 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Data and Web Science GroupUniversity of MannheimMannheimGermany

Personalised recommendations