A Robust Number Parser Based on Conditional Random Fields

  • Heiko PaulheimEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10505)


When processing information from unstructured sources, numbers have to be parsed in many cases to do useful reasoning on that information. However, since numbers can be expressed in different ways, a robust number parser that can cope with number representations in different shapes is required in those cases. In this paper, we show how to train such a parser based on Conditional Random Fields. As training data, we use pairs of Wikipedia infobox entries and numbers from public knowledge graphs. We show that it is possible to parse numbers at an accuracy of more than 90%.


Number parsing Number interpretation Conditional Random Fields 


  1. 1.
    Fleischhacker, D., Paulheim, H., Bryl, V., Völker, J., Bizer, C.: Detecting errors in numerical linked data using cross-checked outlier detection. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 357–372. Springer, Cham (2014). doi: 10.1007/978-3-319-11964-9_23 Google Scholar
  2. 2.
    Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R., Shen, W., Goldberg-Kidon, J.: Google fusion tables: web-centered data management and collaboration. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 1061–1066. ACM (2010)Google Scholar
  3. 3.
    Kennard, R.W., Stone, L.A.: Computer aided design of experiments. Technometrics 11(1), 137–148 (1969). CrossRefzbMATHGoogle Scholar
  4. 4.
    Lafferty, J., McCallum, A., Pereira, F., et al.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML, vol. 1, pp. 282–289 (2001)Google Scholar
  5. 5.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6(2), 167–195 (2013)Google Scholar
  6. 6.
    Lehmberg, O., Ritze, D., Ristoski, P., Meusel, R., Paulheim, H., Bizer, C.: The Mannheim search join engine. Web Semant. Sci. Serv. Agents World Wide Web 35, 159–166 (2015)CrossRefGoogle Scholar
  7. 7.
    Lopez, V., Uren, V., Sabou, M., Motta, E.: Is question answering fit for the semantic web?: a survey. Semant. Web 2(2), 125–155 (2011)Google Scholar
  8. 8.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)CrossRefGoogle Scholar
  9. 9.
    Ritze, D., Lehmberg, O., Bizer, C.: Matching HTML tables to DBpedia. In: Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics, p. 10. ACM (2015)Google Scholar
  10. 10.
    Ritze, D., Lehmberg, O., Oulabi, Y., Bizer, C.: Profiling the potential of web tables for augmenting cross-domain knowledge bases. In: Proceedings of the 25th International Conference on World Wide Web, pp. 251–261. International World Wide Web Conferences Steering Committee (2016)Google Scholar
  11. 11.
    Subercaze, J.: Chaudron: extending DBpedia with measurement. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 434–448. Springer, Cham (2017). doi: 10.1007/978-3-319-58068-5_27 CrossRefGoogle Scholar
  12. 12.
    Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge unifying WordNet and Wikipedia. In: 16th International Conference on World Wide Web, pp. 697–706 (2007)Google Scholar
  13. 13.
    Wienand, D., Paulheim, H.: Detecting incorrect numerical data in DBpedia. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 504–518. Springer, Cham (2014). doi: 10.1007/978-3-319-07443-6_34 CrossRefGoogle Scholar
  14. 14.
    Yakout, M., Ganjam, K., Chakrabarti, K., Chaudhuri, S.: InfoGather: entity augmentation and attribute discovery by holistic matching with web tables. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 97–108. ACM (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Data and Web Science GroupUniversity of MannheimMannheimGermany

Personalised recommendations