Advertisement

High Performance Computing for Cognition-Guided Cardiac Surgery: Soft Tissue Simulation for Mitral Valve Reconstruction in Knowledge-Based Surgery Assistance

  • N. Schoch
  • S. Engelhardt
  • R. De Simone
  • I. Wolf
  • V. Heuveline
Conference paper

Abstract

Medical simulations play an increasingly important role in today’s clinical and surgical treatment processes. The scope of this work is the support of the surgical operation of a mitral valve reconstruction (MVR) by means of biomechanical simulations. Based on numerical simulation, the natural anatomical setting, the ring implantation and the valve closure are modelled and efficiently computed in order to provide surgeons during the operation with additional morphological and functional information. Our simulation is based on the Finite Element Method (FEM) and implemented using the open-source C++ FEM software HiFlow3. Integrating patient data and surgical expert knowledge, and making efficient use of High-Performance Computing (HPC) methods allows for obtaining valuable simulation results for surgery assistance in adequate times. In this work, we focus on the intelligent setup of the biomechanical model and the flexible interfaces of the HPC-based implementation of the resulting MVR simulation, thereby aiming at a cognition-guided, patient-specific integration into systems for surgery assistance.

Notes

Acknowledgements

This work was carried out with the support of the German Research Foundation (DFG) within the projects I03 and B01 of the Collaborative Research Center SFB/TRR 125 ‘Cognition-Guided Surgery’. We performed the computations on the bwUniCluster, funded by the Ministry of Science, Research and the Arts Baden-Wuerttemberg and the Universities of the State of Baden-Wuerttemberg, Germany, within the framework program bwHPC.

References

  1. 1.
    Anzt, H., Augustin, W., Baumann, M., et al.: HiFlow3 – a hardware-aware parallel finite element package. In: Tools for High Performance Computing, vol. 2011, pp. 139–151 (2012)Google Scholar
  2. 2.
    Bathe, K.-J.: Finite Element Procedures. Prentice Hall, New Jersey (1996)zbMATHGoogle Scholar
  3. 3.
    Braess, D.: Finite Elemente. Springer, Berlin/Heidelberg (2007)zbMATHGoogle Scholar
  4. 4.
    Carpentier, A., Chauvaud, S., Fabiani, J.N., et al.: Reconstructive surgery of mitral valve incompetence: ten-year appraisal. J. Thorac. Cardiovasc. Surg. 79, 338–348 (1980)Google Scholar
  5. 5.
    Choi, A., Rim, Y., Mun, J.S., Kim, H.: A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty. J. Bio-Med. Mater. Eng. 24, 341–347 (2014)Google Scholar
  6. 6.
    Ciarlet, P.G.: Mathematical Elasticity. North Holland, Amsterdam (1988)zbMATHGoogle Scholar
  7. 7.
    Engelhardt, S., Lichtenberg, N., Al-Maisary, S., et al.: Towards automatic assessment of the mitral valve coaptation zone from 4D ultrasound. In: Functional Imaging and Modelling of the Heart, Maastricht (2015)CrossRefGoogle Scholar
  8. 8.
    Jokinen, J., Hippelaeinen, M.J., Pitkaenen, O.A., Hartikainen, J.E.: Mitral valve replacement versus repair: propensity-adjusted survival and quality-of-life analysis. J. Thorac. Surg. 84, 451–458 (2007)CrossRefGoogle Scholar
  9. 9.
    Maisano, F., Skantharaja, R., Denti, P., et al.: Mitral annuloplasty. Oxf. J. Multimed. Manual Cardiothorac. Surg. 0918 (2009)Google Scholar
  10. 10.
    Mansi, T., Voigt, I., Georgescu, B., Zheng, X., et al.: An integrated framework for finite-element modeling of mitral valve biomechanics from medical images. J. Med. Image Anal. 16, 1330–1346 (2012)CrossRefGoogle Scholar
  11. 11.
    Mezger, J.: Simulation and animation of deformable bodies. Dissertation, University of Tuebingen, Germany (2008)Google Scholar
  12. 12.
    Morgan, A.E., Pantoja, J.L., Weinsaft, J., et al.: Finite element modeling of mitral valve repair. J. Biomech. Eng. 138(2), 021009 (2016)CrossRefGoogle Scholar
  13. 13.
    Owen, D.R.J., Peric, D.: Computational model for 3-D contact problems with friction based on the penalty method. J. Numer. Methods Eng. 35, 1289–1309 (1992)CrossRefzbMATHGoogle Scholar
  14. 14.
    Pouch, A., Xu, C., Yushkevich, P.A., et al.: Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J. Biomech. 45, 903–907 (2012)CrossRefGoogle Scholar
  15. 15.
    Prot, V., Skallerud, B.: Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers. J. Comput. Mech. 43, 353–368 (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Schoch, N., Engelhardt, S., Zimmermann, N., et al.: Integration of a biomechanical simulation for mitral valve reconstruction into a knowledge-based surgery assistance system. In: Proc. SPIE 9415, Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling, 941502 (2015)Google Scholar
  17. 17.
    Schoch, N., Philipp, P., Weller, T., et al.: Cognitive tools pipeline for assistance of mitral valve surgery. In: Proc. SPIE 9786, Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling, 978603 (2016)Google Scholar
  18. 18.
    Schoch, N., Kissler, F., Stoll, M., et al.: Comprehensive patient-specific information preprocessing for cardiac surgery simulations. Int. J. Comput. Assist. Radiol. Surg. 11(6), 1051–1059 (2016). Special Issue: IPCAI2016Google Scholar
  19. 19.
    Suwelack, S., Stoll, M., Schalck, S., Schoch, N., et al.: The medical simulation markup language – simplifying the biomechanical modeling workflow. J. Stud. Health Technol. Inform. 196, 394–400 (2014)Google Scholar
  20. 20.
    Votta, E., Caiani, E., Veronesi, F., et al.: Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366, 3411 (2008)Google Scholar
  21. 21.
    Votta, E., Le, T.B., Stevanella, M., et al.: Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46, 217–228 (2013)CrossRefGoogle Scholar
  22. 22.
    Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Berlin/Heidelberg (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • N. Schoch
    • 1
  • S. Engelhardt
    • 2
  • R. De Simone
    • 3
  • I. Wolf
    • 2
  • V. Heuveline
    • 1
  1. 1.Engineering Mathematics and Computing Lab (EMCL)Heidelberg UniversityHeidelbergGermany
  2. 2.Medical and Biological InformaticsGerman Cancer Research CenterHeidelbergGermany
  3. 3.Department of Cardiac SurgeryUniversity Hospital of HeidelbergHeidelbergGermany

Personalised recommendations