Advertisement

Asynchronous Graph Pattern Matching on Multiprocessor Systems

  • Alexander Krause
  • Annett Ungethüm
  • Thomas Kissinger
  • Dirk Habich
  • Wolfgang Lehner
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 767)

Abstract

Pattern matching on large graphs is the foundation for a variety of application domains. Strict latency requirements and continuously increasing graph sizes demand the usage of highly parallel in-memory graph processing engines that need to consider non-uniform memory access (NUMA) and concurrency issues to scale up on modern multiprocessor systems. To tackle these aspects, graph partitioning becomes increasingly important. Hence, we present a technique to process graph pattern matching on NUMA systems in this paper. As a scalable pattern matching processing infrastructure, we leverage a data-oriented architecture that preserves data locality and minimizes concurrency-related bottlenecks on NUMA systems. We show in detail, how graph pattern matching can be asynchronously processed on a multiprocessor system.

Notes

Acknowledgments

This work is partly funded within the DFG-CRC 912 (HAEC).

References

  1. 1.
    Bagan, G., et al.: Generating flexible workloads for graph databases. PVLDB 9, 1457–1460 (2016)Google Scholar
  2. 2.
    Decker, S., et al.: The semantic web: the roles of xml and rdf. IEEE 4, 63–73 (2000)Google Scholar
  3. 3.
    Fard, A., et al.: A distributed vertex-centric approach for pattern matching in massive graphs. In: 2013 IEEE International Conference on Big Data (Oct 2013)Google Scholar
  4. 4.
    Gonzalez, J.E., et al.: Powergraph: Distributed graph-parallel computation on natural graphs. In: OSDI (2012)Google Scholar
  5. 5.
    Karypis, G., et al.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kissinger, T., et al.: ERIS: A numa-aware in-memory storage engine for analytical workload. In: ADMS (2014)Google Scholar
  7. 7.
    Krause, A., et al.: Asynchronous graph pattern matching on multiprocessor systems (2017). https://arxiv.org/abs/1706.03968
  8. 8.
    Krause, A., et al.: Partitioning Strategy Selection for In-Memory Graph Pattern Matching on Multiprocessor Systems (2017). http://wwwdb.inf.tu-dresden.de/europar2017/. Accepted at Euro-Par 2017
  9. 9.
    McCune, R.R., et al.: Thinking like a vertex: A survey of vertex-centric frameworks for large-scale distributed graph processing. ACM Comput. Surv. 48(2), 25:1–25:39 (2015)CrossRefGoogle Scholar
  10. 10.
    Nguyen, D., et al.: A lightweight infrastructure for graph analytics. In: SIGOPS (2013)Google Scholar
  11. 11.
    Ogata, H., et al.: A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res. 28, 4021–4028 (2000)CrossRefGoogle Scholar
  12. 12.
    Otte, E., et al.: Social network analysis: a powerful strategy, also for the information sciences. J. Inf. Sci. 28, 441–453 (2002)CrossRefGoogle Scholar
  13. 13.
    Pandis, I., et al.: Data-oriented transaction execution. PVLDB 2, 928–939 (2010)Google Scholar
  14. 14.
    Pandit, S., et al.: Netprobe: A fast and scalable system for fraud detection in online auction networks. In: WWW (2007)Google Scholar
  15. 15.
    Seo, J., et al.: Distributed socialite: A datalog-based language for large-scale graph analysis. PVLDB 6, 1906–1917 (2013)Google Scholar
  16. 16.
    Shun, J., et al.: Ligra: a lightweight graph processing framework for shared memory. IN: SIGPLAN (2013)Google Scholar
  17. 17.
    Tas, M.K., et al.: Greed is good: Optimistic algorithms for bipartite-graph partial coloring on multicore architectures. CoRR (2017)Google Scholar
  18. 18.
    Tran, T., et al.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In: ICDE (2009)Google Scholar
  19. 19.
    Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33, 103–111 (1990)CrossRefGoogle Scholar
  20. 20.
    Wood, P.T.: Query languages for graph databases. SIGMOD 41, 50–60 (2012)CrossRefGoogle Scholar
  21. 21.
    Yasui, Y., et al.: Numa-aware scalable graph traversal on SGI UV systems. IN: HPGP (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexander Krause
    • 1
  • Annett Ungethüm
    • 1
  • Thomas Kissinger
    • 1
  • Dirk Habich
    • 1
  • Wolfgang Lehner
    • 1
  1. 1.Database Systems GroupTechnische Universität DresdenDresdenGermany

Personalised recommendations