Advertisement

Fuzzy Rule Based Expert System to Diagnose Chronic Kidney Disease

  • M. H. Fazel ZarandiEmail author
  • Mona Abdolkarimzadeh
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 648)

Abstract

On time diagnosis of chronic Kidney disease problems is essential because of patient pain and cost of treatment. To alleviate this hazard, in this research a type-1 fuzzy inference system is proposed to diagnosis chronic Kidney disease. The knowledge representation of this system is provided from high level, based on lifestyle of the patient and historical data about his/her problem and some of the clinical examination. We use nine features for diagnosis disease these are age, FBS (Fasting Blood Sugar), Blood urea, Serum creatinine, Na, K, Hemoglobin, rbc (red blood cells), wbc (white blood cells). First we generate type-1 fuzzy inference system then improve our FIS with ANFIS. We generate type-1 fuzzy system for diagnosis chronic kidney disease with real data.

Keywords

Fuzzy rule based Chronic kidney disease ANFIS 

References

  1. 1.
    Zhang, Q.-L., Rothenbacher, D.: Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Public Health 8(1), 117 (2008)CrossRefGoogle Scholar
  2. 2.
    Naghavi, M., Wang, H., Lozano, R., Davis, A., Liang, X., Zhou, M., Vollset, S.E., Ozgoren, A.A., Abdalla, S., Abd-Allah, F., et al.: Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet 385(9963), 117–171 (2015)CrossRefGoogle Scholar
  3. 3.
    Zarandi, M.F., Turksen, I., Hoseini, S.M., Bastani, S., Mohebi, A.: A fuzzy intelligent information agent architecture for supply chains. Sci. Iran. 15(5), 623–636 (2008)Google Scholar
  4. 4.
    Leung, Y., Kong, H.: Fuzzy set and fuzzy logic. In: International Encyclopedia of Human Geography, pp. 283–287 (2009)Google Scholar
  5. 5.
    Castanho, M., Hernandes, F., De Ré, A.M., Rautenberg, S., Billis, A.: Fuzzy expert system for predicting pathological stage of prostate cancer. Expert Syst. Appl. 40(2), 466–470 (2013)CrossRefGoogle Scholar
  6. 6.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar
  7. 7.
    Obot, O.U., Uzoka, F.-M.E.: Fuzzy rule-based framework for the management of tropical diseases. Int. J. Med. Eng. Inform. 1(1), 7–17 (2008)CrossRefGoogle Scholar
  8. 8.
    Bharti, P.K., Silawat, N., Singh, P.P., Singh, M.P., Shukla, M., Chand, G., Dash, A.P., Singh, N.: The usefulness of a new rapid diagnostic test, the first response® malaria combo (pLDH/HRP2) card test, for malaria diagnosis in the forested belt of central india. Malar. J. 7(1), 126 (2008)CrossRefGoogle Scholar
  9. 9.
    Zarandi, M.F., Zolnoori, M., Moin, M., Heidarnejad, H.: A fuzzy rule-based expert system for diagnosing asthma. Sci. Iran. Trans. E Ind. Eng. 17(2), 129 (2010)Google Scholar
  10. 10.
    Adeli, A., Neshat, M.: A fuzzy expert system for heart disease diagnosis. In: Proceedings of International Multi Conference of Engineers and Computer Scientists, Hong Kong, vol. 1 (2010)Google Scholar
  11. 11.
    de Schatz, C.V., Schneider, F.K.: Intelligent and expert systems in medicine–a review. In: XVIII Congreso Argentino de Bioingeniería SABI 2011-VII Jornadas de Ingeniería Clínica Mar del PlataSara, pp. 28–30 (2011)Google Scholar
  12. 12.
    Durkin, J.J.: Expert System Design and Development. Prentice-Hall, New Jersey (1994)zbMATHGoogle Scholar
  13. 13.
    Cueto-Manzano, A.M., Cortés-Sanabria, L., Martínez-Ramírez, H.R., Rojas-Campos, E., Gómez-Navarro, B., Castillero-Manzano, M.: Prevalence of chronic kidney disease in an adult population. Arch. Med. Res. 45(6), 507–513 (2014)CrossRefGoogle Scholar
  14. 14.
    Pérez-Sáez, M.J., Prieto-Alhambra, D., Barrios, C., Crespo, M., Redondo, D., Nogués, X., Díez-Pérez, A., Pascual, J.: Increased hip fracture and mortality in chronic kidney disease individuals: the importance of competing risks. Bone 73, 154–159 (2015)CrossRefGoogle Scholar
  15. 15.
    Chamran Hospital in Iran. http://www.chamranhospital.ir

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Industrial EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations