Advertisement

Outdoor Robot Navigation Based on Particle Swarm Optimization

  • Erasmo Gabriel Martínez Soltero
  • Carlos Lopéz-Franco
  • Alma Y. AlanisEmail author
  • Nancy Arana-Daniel
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 648)

Abstract

This paper presents an approach to perform local navigation in outdoor environments using a bio-inspired algorithm. The proposed approach uses the Particle Swarm Optimization (PSO) to perform the robot navigation. The PSO particles represent a possible new position in the navigation task. The best PSO particle is chosen and is transformed into latitude and longitude values. Finally, given the desired latitude and longitude values a controller is used to move the robot from its current position and orientation to the valid and best PSO particle in each iteration until reaching the goal given in latitude and longitude.

Keywords

GPS Mobile robots Outdoor navigation Particle swarm optimization 

References

  1. 1.
    Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey. J. Intell. Robot. Syst. 53(3), 263 (2008)CrossRefGoogle Scholar
  2. 2.
    Elbeltagi, E., Hegazy, T., Grierson, D.: Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inf. 19(1), 43–53 (2005)CrossRefGoogle Scholar
  3. 3.
    Eberhart, R.C., Kennedy, J.: Particle swarm optimization. In: proceeding of IEEE International Conference on Neural Network, Perth, Australia, pp. 1942–1948 (1995)Google Scholar
  4. 4.
    Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)CrossRefGoogle Scholar
  5. 5.
    López-Franco, C., Zepeda, J., Arana-Daniel, N., López-Franco, L.: Obstacle avoidance using PSO. In: 2012 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6. IEEE, September 2012Google Scholar
  6. 6.
    Vincenty, T.: Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev. 23(176), 88–93 (1975)CrossRefGoogle Scholar
  7. 7.
    True, S.A.: Planning the future of the World Geodetic System 1984. In: Position Location and Navigation Symposium, PLANS 2004, pp. 639–648. IEEE, April 2004Google Scholar
  8. 8.
    MTi User Manual. https://www.xsens.com/products/mti-g-710/. Accessed 21 March 2017
  9. 9.
    Liu, Y., Gao, J., Shi, X., Zhao, J., Cao, H., Zhao, F., Liu, C.: Navigation research on outdoor miniature reconnaissance robot. In: 2016 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 977–982. IEEE, August 2016Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Erasmo Gabriel Martínez Soltero
    • 1
  • Carlos Lopéz-Franco
    • 1
  • Alma Y. Alanis
    • 1
    Email author
  • Nancy Arana-Daniel
    • 1
  1. 1.Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e IngenieríasGuadalajaraMexico

Personalised recommendations