Advertisement

Smart Protective Clothing for Aircraft Crew

  • Emel OnderEmail author
  • Ezgi C. B. Noyan
  • Sena C. Duru
  • Cevza Candan
  • Selcuk Paker
  • Rafet Sayar
Chapter

Abstract

Using smart and functional materials in textile applications has gained much more importance over the last decade in order to provide and improve some specific end product properties. In the present work, we designed spacer weft-knitted fabrics for the purpose of protective clothing – which has an electromagnetic shielding effect and a good thermal property – of aircraft crew. To provide two functions in one fabric, spacer weft-knitted fabrics composed of inherently thermally perfect wool and electrically conductive silver-plated nylon yarns were developed initially. The application of temperature-responsive polymer (TRP) and phase change material (PCM) onto these fabrics was then performed in order to enhance their thermal properties. The structural characterizations and thermal analyses performed showed that the developed fabrics demonstrated not only much better electromagnetic shielding effect but also improved thermal performance than ordinary clothing as underwear.

Keywords

Smart clothing Nanomaterial Crew Fabric Faraday shielding effect 

Notes

Acknowledgements

We thank Yünsa A.Ş for their support providing worsted wool yarns.

References

  1. 1.
    Jiang, S. X., & Guo, R. H. (2011). Electromagnetic shielding and corrosion resistance of electroless Ni–P/Cu–Ni multilayer plated polyester fabric. Surface and Coating Technology, 205(17–18), 4274–4279.CrossRefGoogle Scholar
  2. 2.
    Roh, J. S., Chi, Y. S., Kang, T. J., & Nam, S. (2008). Electromagnetic shielding effectiveness of multifunctional metal composite fabrics. Textile Research Journal, 78(9), 825–835.CrossRefGoogle Scholar
  3. 3.
    Zhang, C. S., Ni, Q. Q., Fu, S. Y., & Kurashiki, K. (2007). Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Composites Science and Technology, 67(14), 2973.CrossRefGoogle Scholar
  4. 4.
    Genuis, S.J. (2008). Fielding a current idea: exploring the public health impact of electromagnetic radiation. Public Health, 22(2), 113–124.Google Scholar
  5. 5.
    Wessapan, T., Srisawatdhisukul, S., & Rattanadecho, P. (2011). The effects of dielectric shield on specific absorption rate and heat transfer in the human body exposed to leakage microwave energy. International Communications Heat Mass, 38(2), 255–262.CrossRefGoogle Scholar
  6. 6.
    Al-Saleh, M. H., & Sundararaj, U. (2009). Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, 47(7), 1738–1746.CrossRefGoogle Scholar
  7. 7.
    Matthiä, D., Schaefer, M., & Meier, M. M. (2015). Economic impact and effectiveness of radiation protection measures in aviation during a ground level enhancement. Journal Space Weather Space Climate, 5(A17), 6. http://www.swsc-journal.org/articles/swsc/pdf/2015/01/swsc140044.pdf. Accessed August 2016.
  8. 8.
    Koops, L., Sizmann, A. (2014). Relevance of cosmic radiation exposure for hypersonic flight. Deutscher Luft- und Raumfahrtkongress, Document ID: 340206, http://www.dglr.de/publikationen/2015/340206.pdf. Accessed August 2016.
  9. 9.
    http://www.dglr.de/. Accessed May 2017.
  10. 10.
    Alvarez, L. E., Eastham, S. D., & Barrett, S. R. H. (2016). Radiation dose to the global flying population. Journal of Radiological Protection, 36(1), 93–103.CrossRefGoogle Scholar
  11. 11.
    Bennett, L. G. I., Lewis, B. J., et al. (2013). A survey of the cosmic radiation exposure of air Canada pilots during maximum galactic radiation conditions in 2009. Radiation Measurements, 49(2), 103–108.CrossRefGoogle Scholar
  12. 12.
    Desmaris, G. (2015). Cosmic radiation in aviation: Radiological protection of air France aircraft crew. In: ICRP 2015 Proceedings, pp. 64–74.Google Scholar
  13. 13.
    Langenhove, L. V. (Ed.). (2007). Smart textiles for medicine and healthcare materials, systems and applications. UK: Woodhead Publishing Limited and CRC Press LLC.Google Scholar
  14. 14.
    Black, S. (2007). Trends in smart medical textiles: Smart textiles for medicine and healthcare (pp. 3–26). Cambridge: Woodhead Publishing Ltd..CrossRefGoogle Scholar
  15. 15.
    Pan, N., et al. (Eds.). (2011). Functional textiles for improved performance, protection and health. UK: Woodhead Publishing Limited.Google Scholar
  16. 16.
    McCann, J., et al. (Eds.). (2009). Smart clothes and wearable technology. UK: Woodhead Publishing Limited and CRC Press LLC.Google Scholar
  17. 17.
    Smith, W. C. (Ed.). (2010). Smart textile coatings and laminates. UK: Woodhead Publishing Limited and CRC Press LLC.Google Scholar
  18. 18.
    Lu, M., Xie, R., et al. (2016). Enhancement in electrical conductive property of polypyrrole-coated cotton fabrics using cationic surfactant. Journal of Applied Polymer Science, 133(32), 43601.CrossRefGoogle Scholar
  19. 19.
    Wei, Q., Yu, L., et al. (2008). Preparation and characterization of copper nanocomposite textiles. Journal of Industrial Textiles, 37(3), 275–283.CrossRefGoogle Scholar
  20. 20.
    Ersoy, M. S., & Onder, E. (2014). Electroless silver coating on glass stitched fabrics for electromagnetic shielding applications. Textile Research Journal, 84(19), 2103–2114.CrossRefGoogle Scholar
  21. 21.
    Kim, S. H., Oh, K. W., & Bahk, J. H. (2004). Electrochemically synthesized polypyrrole and Cu-plated nylon/Spandex for electrotherapeutic pad electrode. Journal of Applied Polymer Science, 91(6), 4064–4071.CrossRefGoogle Scholar
  22. 22.
    Lu, Y., Jiang, S., & Huang, Y. (2010). Ultrasonic-assisted electroless deposition of Ag on PET fabric with low silver content for EMI shielding. Surface and Coating Technology, 204(16–17), 2829–2833.CrossRefGoogle Scholar
  23. 23.
    Koprowska, J., Pietranik, M., Stawski, W. (2007). New type of textiles with shielding properties. Fibres & Textiles in Eastern Europe 12 (3):39–42.Google Scholar
  24. 24.
    Perumalraja, R., Dasaradan, B. S., et al. (2009). Electromagnetic shielding effectiveness of copper core-woven fabrics. Journal Text I, 100(6), 512–524.CrossRefGoogle Scholar
  25. 25.
    Jiang, S. X. (2011). Electromagnetic shielding and corrosion resistance of electroless Ni-P/Cu-Ni multilayer plated polyester fabric. Surface & Coatings Technology, 205(17–18), 4274–4279.CrossRefGoogle Scholar
  26. 26.
    Varnaite, S. (2010). The use of conductive yarns in woven fabric for protection against electrostatic field. Materials Science, 16, 133–137.Google Scholar
  27. 27.
    Statex Products. http://statex.de/index.php/en/shieldex-2/produkte/. Accessed 19 Aug 2016.
  28. 28.
    Geetha, S., Kumar, K. K. S., et al. (2007). Synergetic effect of conducting polymer composites reinforced e-glass fabric for the control of electromagnetic radiations. Composites Science and Technology, 70(6), 1017–1022.CrossRefGoogle Scholar
  29. 29.
    Satheesh Kumar, K. K. (2005). Freestanding conducting polyaniline film for the control of electromagnetic radiations. Current Applied Physics, 5(6), 603–608.CrossRefGoogle Scholar
  30. 30.
    Maity, S., Singha, K., et al. (2013). Textiles in electromagnetic radiation protection. Journal Safety Engineering, 2(2), 11–19.Google Scholar
  31. 31.
    Hu, J., Meng, H., et al. (2012). A review of stimuli-responsive polymers for smart textile applications. Smart Materials and Structures, 21(5), 21–23.CrossRefGoogle Scholar
  32. 32.
    Onder, E., & Sarier, N. (2015). Thermal regulation finishes for textiles. In R. Paul (Ed.), Functional finishes for textiles (pp. 17–78). Amsterdam: The Textile Institute & Woodhead Publishing, Elsevier Ltd.CrossRefGoogle Scholar
  33. 33.
    Uludag, B. (2014). Development of thermo-responsive and thermo-regulated smart textiles, Unpublished MSc Thesis. İstanbul: ITU.Google Scholar
  34. 34.
    Yao, J., Liu, Y., et al. (2008). Characterization of secondary structure transformation of stretched and slenderized wool fibers with FTIR spectra’. Journal of Engineered Fibers and Fabrics, 3(2), 22. https://www.researchgate.net/publication/44567421 _Characterization_of_Secondary_Structure_Transformation_of_Stretched_and_Slenderized_Wool_Fibers_with_FTIR_Spectra. Accessed August 2016.Google Scholar
  35. 35.
    Onder, E., Sarier, N., et al. (2013). Ultrasound assisted solvent free intercalation of montmorillonite with PEG1000: A new type of organoclay with improved thermal properties’. Thermochimica Acta, 566, 24–35.CrossRefGoogle Scholar
  36. 36.
    Sánchez, M. T., Pariente, J. P., Alvarez, C. M. (2008). Dynamics of PEO-PPO-PEO block copolymer aggregation and silicate mesophase formation monitored by time resolved ATR-FTIR spectroscopy. Studies in Surface Science and Catalysis 174: 333–336., https://doi.org/10.1016/S0167-2991(08)80210-8. Accessed 19 Aug 2016.
  37. 37.
    Sarier, N., & Onder, E. (2007). The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochimica Acta, 452, 149–160.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Emel Onder
    • 1
    Email author
  • Ezgi C. B. Noyan
    • 1
  • Sena C. Duru
    • 1
  • Cevza Candan
    • 1
  • Selcuk Paker
    • 2
  • Rafet Sayar
    • 3
  1. 1.Faculty of Textile Technologies and DesignIstanbul Technical UniversityİstanbulTurkey
  2. 2.Faculty of Electrical and ElectronicsIstanbul Technical UniversityİstanbulTurkey
  3. 3.Turkish Republic Land ForcesİstanbulTurkey

Personalised recommendations