CRutoN: Automatic Verification of a Robotic Assistant’s Behaviours

  • Paul GainerEmail author
  • Clare Dixon
  • Kerstin Dautenhahn
  • Michael Fisher
  • Ullrich Hustadt
  • Joe Saunders
  • Matt Webster
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10471)


The Care-O-bot is an autonomous robotic assistant that can support people in domestic and other environments. The behaviour of the robot can be defined by a set of high level control rules. The adoption and further development of such robotic assistants is inhibited by the absence of assurances about their safety. In previous work, formal models of the robot behaviour and its environment were constructed by hand and model checkers were then used to check whether desirable formal temporal properties were satisfied for all possible system behaviours. In this paper we describe the details of the software CRutoN, that provides an automatic translation from sets of robot control rules into input for the model checker NuSMV. We compare our work with previous attempts to formally verify the robot control rules, discuss the potential applications of the approach, and consider future directions of research.


  1. 1.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an OpenSource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002). doi: 10.1007/3-540-45657-0_29 CrossRefGoogle Scholar
  2. 2.
    Cowley, A., Taylor, C.J.: Towards language-based verification of robot behaviors. In: Proceedings of IROS 2011, pp. 4776–4782. IEEE (2011)Google Scholar
  3. 3.
    Dixon, C., Webster, M., Saunders, J., Fisher, M., Dautenhahn, K.: “The fridge door is open”–temporal verification of a robotic assistant’s behaviours. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds.) TAROS 2014. LNCS, vol. 8717, pp. 97–108. Springer, Cham (2014). doi: 10.1007/978-3-319-10401-0_9 Google Scholar
  4. 4.
    Duque, I., Dautenhahn, K., Koay, K.L., Willcock, L., Christianson, B.: Knowledge-driven user activity recognition for a smart house? Development and validation of a generic and low-cost, resource-efficient system. In: Proceedings of ACHI 2013. IARIA XPS Press (2013)Google Scholar
  5. 5.
    Gainer, P.: Verification for a robotic assistant. Technical report, ULCS-17-003, Department of Computer Science, University of Liverpool, Liverpool, UK (2017)Google Scholar
  6. 6.
    Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley, Reading (2004)Google Scholar
  7. 7.
    ISO: Robots and robotic devices - safety requirements for personal care robots. ISO 13482: 2014, International Organization for Standardization, Geneva, Switzerland (2014)Google Scholar
  8. 8.
    Kouskoulas, Y., Renshaw, D., Platzer, A., Kazanzides, P.: Certifying the safe design of a virtual fixture control algorithm for a surgical robot. In: Proceedings of HSCC 2013, pp. 263–272. ACM (2013)Google Scholar
  9. 9.
    McMillan, K.L.: The SMV language. Technical report, Cadence Berkeley Labs (1999)Google Scholar
  10. 10.
    Mohammed, A., Stolzenburg, F., Furbach, U.: Multi-robot systems: modeling, specification, and model checking. INTECH Open Access Publisher (2010)Google Scholar
  11. 11.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: Proceedings of the ICRA Workshop on Open Source Software in Robotics (2009)Google Scholar
  12. 12.
    Reiser, U., Connette, C., Fischer, J., Kubacki, J., Bubeck, A., Weisshardt, F., Jacobs, T., Parlitz, C., Hägele, M., Verl, A.: Care-o-bot® 3: creating a product vision for service robot applications by integrating design and technology. In: Proceedings of IROS 2009, pp. 1992–1998. IEEE (2009)Google Scholar
  13. 13.
    Saunders, J., Burke, N., Koay, K.L., Dautenhahn, K.: A user friendly robot architecture for re-ablement and co-learning in a sensorised home. In: Proceedings of AAATE 2013, pp. 49–58. IOS Press (2013)Google Scholar
  14. 14.
    Saunders, J., Syrdal, D.S., Koay, K.L., Burke, N., Dautenhahn, K.: “Teach Me-Show Me”—end-user personalization of a smart home and companion robot. IEEE Trans. Hum.-Mach. Syst. 46(1), 27–40 (2016)CrossRefGoogle Scholar
  15. 15.
    Sierhuis, M., Clancey, W.J.: Modeling and simulating work practice: a method for work systems design. IEEE Intell. Syst. 17(5), 32–41 (2002)CrossRefGoogle Scholar
  16. 16.
    Stocker, R., Dennis, L., Dixon, C., Fisher, M.: Verifying Brahms human-robot teamwork models. In: Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 385–397. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33353-8_30 CrossRefGoogle Scholar
  17. 17.
    Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K.L., Dautenhahn, K., Saez-Pons, J.: Toward reliable autonomous robotic assistants through formal verification: a case study. IEEE Trans. Hum.-Mach. Syst. 46(2), 186–196 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Paul Gainer
    • 1
    Email author
  • Clare Dixon
    • 1
  • Kerstin Dautenhahn
    • 2
  • Michael Fisher
    • 1
  • Ullrich Hustadt
    • 1
  • Joe Saunders
    • 2
  • Matt Webster
    • 1
  1. 1.University of LiverpoolLiverpoolUK
  2. 2.University of HertfordshireHatfieldUK

Personalised recommendations