Numerical Methods for High-Dimensional Kinetic Equations

  • Heyrim Cho
  • Daniele Venturi
  • George Em Karniadakis
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 14)


High-dimensionality is one of the major challenges in kinetic modeling and simulation of realistic physical systems. The most appropriate numerical scheme needs to balance accuracy and computational complexity, and it also needs to address issues such as multiple scales, lack of regularity, and long-term integration. In this chapter, we review state-of-the-art numerical techniques for high-dimensional kinetic equations, including low-rank tensor approximation, sparse grid collocation, and ANOVA decomposition.



We gratefully acknowledge support from DARPA grant N66001-15-2-4055, ARO grant W991NF-14-1-0425, and AFOSR grant FA9550-16-1-0092.


  1. 1.
    E. Acar, D.M. Dunlavy, T.G. Kolda, A scalable optimization approach for fitting canonical tensor decompositions. J. Chemom. 25, 67–86 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids: part II: transient simulation using space-time separated representations. J. Non-Newtonian Fluid Mech. 144(2), 98–121 (2007)MATHCrossRefGoogle Scholar
  3. 3.
    M. Bachmayr, R. Schneider, A. Uschmajew, Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations. Found. Comput. Math. 16, 1423–1472 (2016)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    C. Battaglino, G. Ballard, T.G. Kolda, A practical randomized CP tensor decomposition (2017). arXiv: 1701.06600Google Scholar
  5. 5.
    G. Beylkin, M.J. Mohlenkamp, Algorithms for numerical analysis in high dimensions. SIAM J. Sci. Comput. 26(6), 2133–2159 (2005)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    G. Beylkin, J. Garcke, M.J. Mohlenkamp, Multivariate regression and machine learning with sums of separable functions. SIAM J. Sci. Comput. 31(3), 1840–1857 (2009)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    M. Bieri, C. Schwab, Sparse high order FEM for elliptic SPDEs. Comput. Methods Appl. Mech. Eng. 198, 1149–1170 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    G.A. Bird, Molecular Gas Dynamics and Direct Numerical Simulation of Gas Flows (Clarendon Press, Oxford, 1994)Google Scholar
  9. 9.
    V.V. Bolotin, Statistical Methods in Structural Mechanics (Holden-Day, San Francisco, 1969)MATHGoogle Scholar
  10. 10.
    H.J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Y. Cao, Z. Chen, M. Gunzbuger, ANOVA expansions and efficient sampling methods for parameter dependent nonlinear PDEs. Int. J. Numer. Anal. Model. 6, 256–273 (2009)MathSciNetMATHGoogle Scholar
  12. 12.
    C. Cercignani, The Boltzmann Equation and Its Applications (Springer, New York, 1988)MATHCrossRefGoogle Scholar
  13. 13.
    C. Cercignani, U.I. Gerasimenko, D.Y. Petrina, Many Particle Dynamics and Kinetic Equations, 1st edn. (Kluwer Academic Publishers, Dordrecht, 1997)MATHCrossRefGoogle Scholar
  14. 14.
    Y. Chen, D. Han, L. Qi, New ALS methods with extrapolating search directions and optimal step size for complex-valued tensor decompositions. IEEE Trans. Signal Process. 59, 5888–5898 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Y. Cheng, I.M. Gamba, A. Majorana, C.W. Shu, A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices. Comput. Methods Appl. Mech. Eng. 198, 3130–3150 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Y. Cheng, I.M. Gamba, A. Majorana, C.W. Shu, A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations. SEMA J. 54, 47–64 (2011)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    F. Chinesta, A. Ammar, E. Cueto, Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Comput. Methods. Appl. Mech. Eng. 17(4), 327–350 (2010)MathSciNetMATHGoogle Scholar
  18. 18.
    H. Cho, D. Venturi, G.E. Karniadakis, Adaptive discontinuous Galerkin method for response-excitation PDF equations. SIAM J. Sci. Comput. 35(4), B890–B911 (2013)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    H. Cho, D. Venturi, G.E. Karniadakis, Statistical analysis and simulation of random shocks in Burgers equation. Proc. R. Soc. A 260, 20140080(1–21) (2014)Google Scholar
  20. 20.
    H. Cho, D. Venturi, G.E. Karniadakis, Numerical methods for high-dimensional probability density function equations. J. Comput. Phys. 305, 817–837 (2016)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    P. Comon, X. Luciani, A.L.F. de Almeida, Tensor decompositions, alternating least squares and other tales. J. Chemom. 23, 393–405 (2009)CrossRefGoogle Scholar
  22. 22.
    S.V. Dolgov, B.N. Khoromskij, I.V. Oseledets, Fast solution of parabolic problems in the tensor train/quantized tensor train format with initial application to the Fokker-Planck equation. SIAM J. Sci. Comput. 34(6), A3016–A3038 (2012)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    S.V. Dolgov, A.P. Smirnov, E.E. Tyrtyshnikov, Low-rank approximation in the numerical modeling of the Farley-Buneman instability in ionospheric plasma. J. Comput. Phys. 263, 268–282 (2014)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    J. Dominy, D. Venturi, Duality and conditional expectations in the Nakajima-Mori-Zwanzig formulation. J. Math. Phys. 58, 082701(1–26) (2017)Google Scholar
  25. 25.
    A. Doostan, G. Iaccarino, A least-squares approximation of partial differential equations with high-dimensional random inputs. J. Comput. Phys. 228(12), 4332–4345 (2009)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    B.G. Dostupov, V.S. Pugachev, The equation for the integral of a system of ordinary differential equations containing random parameters. Automatika i Telemekhanica (in Russian) 18, 620–630 (1957)Google Scholar
  27. 27.
    V. Ehrlacher, D. Lombardi, A dynamical adaptive tensor method for the Vlasov-Poisson system. J. Comput. Phys. 339, 285–306 (2017)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    M. Espig, W. Hackbusch, A regularized Newton method for the efficient approximation of tensors represented in the canonical tensor format. Numer. Math. 122, 489–525 (2012)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    M. Espig, W. Hackbusch, A. Litvinenko, H.G. Matthies, P. Wähnert, Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats. Comput. Math. Appl. 67(4), 818–829 (2014)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    A. Fiasconaro, B. Spagnolo, A. Ochab-Marcinek, E. Gudowska-Nowak, Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response. Phys. Rev. E 74(4), 041904 (2006)Google Scholar
  31. 31.
    F. Filbet, G. Russo, High-order numerical methods for the space non-homogeneous Boltzmann equations. J. Comput. Phys. 186, 457–480 (2003)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    J. Foo, G.E. Karniadakis, Multi-element probabilistic collocation method in high dimensions. J. Comput. Phys. 229, 1536–1557 (2010)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    R.O. Fox, Computational Models for Turbulent Reactive Flows (Cambridge University Press, Cambridge, 2003)CrossRefGoogle Scholar
  34. 34.
    S. Friedland, V. Mehrmann, R. Pajarola, S.K. Suter, On best rank one approximation of tensors. Numer. Linear Algebra Appl. 20, 942–955 (2013)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    U. Frisch, Turbulence: the legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)Google Scholar
  36. 36.
    Z. Gao, J.S. Hesthaven, On ANOVA expansions and strategies for choosing the anchor point. Appl. Math. Comput. 217(7), 3274–3285 (2010)MathSciNetMATHGoogle Scholar
  37. 37.
    J. Garcke, M. Griebel, Sparse Grids and Applications (Springer, Berlin, 2013)MATHCrossRefGoogle Scholar
  38. 38.
    V. Gradinaru, Fourier transform on sparse grids: code design and the time dependent Schrödinger equation. Computing 80(1), 1–22 (2007)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    L. Grasedyck, Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31, 2029–2054 (2010)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    L. Grasedyck, D. Kressner, C. Tobler, A literature survey of low-rank tensor approximation techniques. GAMM Mitteilungen 36(1), 53–78 (2013)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    M. Griebel, Sparse grids and related approximation schemes for higher dimensional problems, in Foundations of Computational Mathematics Santander 2005, vol. 331, ed. by L.M. Pardo, A. Pinkus, E. Süli, M.J. Todd (Cambridge University Press, Cambridge, 2006), pp. 106–161Google Scholar
  42. 42.
    M. Griebel, G. Zumbusch, Adaptive sparse grids for hyperbolic conservation laws, in Hyperbolic Problems: Theory, Numerics, Applications (Springer, Berlin, 1999), pp. 411–422MATHCrossRefGoogle Scholar
  43. 43.
    W. Guo, Y. Cheng, An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multi-dimensions. SIAM J. Sci. Comput. 38(6), 1–29 (2016)MathSciNetCrossRefGoogle Scholar
  44. 44.
    W. Hackbusch, B.N. Khoromskij, Tensor-product approximation to multidimensional integral operators and Green’s functions. SIAM J. Matrix Anal. Appl. 30(3), 1233–1253 (2008)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer. 12, 399–450 (2003)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    D.R. Hatch, D. del Castillo-Negrete, P.W. Terry, Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value decomposition. J. Comput. Phys. 22, 4234–4256 (2012)MATHCrossRefGoogle Scholar
  47. 47.
    J.S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems (Cambridge University Press, Cambridge, 2007)MATHCrossRefGoogle Scholar
  48. 48.
    I. Ibragimov, S. Rjasanow, Three way decomposition for the Boltzmann equation. J. Comput. Math. 27, 184–195 (2009)MathSciNetMATHGoogle Scholar
  49. 49.
    T. Jahnke, W. Huisinga, A dynamical low-rank approach to the chemical master equation. Bull. Math. Biol. 70, 2283–2302 (2008)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    R.P. Kanwal, Generalized Functions: Theory and Technique, 2nd edn. (Birkhäuser, Boston, 1998)MATHGoogle Scholar
  51. 51.
    A. Karimi, M.R. Paul, Extensive chaos in the Lorenz-96 model. Chaos 20(4), 043105(1–11) (2010)Google Scholar
  52. 52.
    L. Karlsson, D. Kressner, A. Uschmajew, Parallel algorithms for tensor completion in the CP format. Parallel Comput. 57, 222–234 (2016)MathSciNetCrossRefGoogle Scholar
  53. 53.
    V.A. Kazeev, E.E. Tyrtyshnikov, Structure of the Hessian matrix and an economical implementation of Newton’s method in the problem of canonical approximation of tensors. Comput. Math. Math. Phys. 50, 927–945 (2010)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    V. Kazeev, M. Khammash, M. Nip, C. Schwab, Direct solution of the chemical master equation using quantized tensor trains. Semin. Appl. Math. 2013-04, 2283–2302 (2013)Google Scholar
  55. 55.
    B.N. Khoromskij, Structured data-sparse approximation to high order tensors arising from the deterministic Boltzmann equation. Math. Comput. 76(259), 1291–1315 (2007)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    B.N. Khoromskij, I.V. Oseledets, Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic PDEs. Comput. Methods Appl. Math. 10(4), 376–394 (2010)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    V.I. Klyatskin, Dynamics of Stochastic Systems (Elsevier, Amsterdam, 2005)MATHGoogle Scholar
  58. 58.
    K. Kormann, A semi-lagrangian Vlasov solver in tensor train format. SIAM J. Sci. Comput. 37(4), B613–B632 (2015)MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    G. Leonenko, T. Phillips, On the solution of the Fokker-Planck equation using a high-order reduced basis approximation. Comput. Methods Appl. Mech. Eng. 199(1-4), 158–168 (2009)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    J. Li, J.B. Chen, Stochastic Dynamics of Structures (Wiley, Singapore, 2009)MATHCrossRefGoogle Scholar
  61. 61.
    G. Li, S.W. Wang, H. Rabitz, S. Wang, P. Jaffé, Global uncertainty assessments by high dimensional model representations (HDMR). Chem. Eng. Sci. 57(21), 4445–4460 (2002)CrossRefGoogle Scholar
  62. 62.
    E.N. Lorenz, Predictability - a problem partly solved, in ECMWF Seminar on Predictability, Reading, vol. 1 (1996), pp. 1–18Google Scholar
  63. 63.
    D. Lucor, C.H. Su, G.E. Karniadakis, Generalized polynomial chaos and random oscillators. Int. J. Numer. Methods Eng. 60(3), 571–596 (2004)MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    X. Ma, N. Zabaras, An adaptive hierarchical sparse grid collocation method for the solution of stochastic differential equations. J. Comput. Phys. 228, 3084–3113 (2009)MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    X. Ma, N. Zabaras, An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. J. Comput. Phys. 229, 3884–3915 (2010)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    A.N. Malakhov, A.I. Saichev, Kinetic equations in the theory of random waves. Radiophys. Quantum Electron. 17(5), 526–534 (1974)CrossRefGoogle Scholar
  67. 67.
    G.D. Marco, L. Pareschi, Numerical methods for kinetic equations. Acta Numer. 23, 369–520 (2014)MathSciNetCrossRefGoogle Scholar
  68. 68.
    P. Markovich, C. Ringhofer, C. Schmeiser, Semiconductor Equations (Springer, Berlin, 1989)MATHGoogle Scholar
  69. 69.
    H.G. Matthies, E. Zander, Solving stochastic systems with low-rank tensor compression. Linear Algebra Appl. 436(10), 3819–3838 (2012)MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    M.J. Mohlenkamp, Musings on multilinear fitting. Linear Algebra Appl. 438, 834–852 (2013)MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, vol. I (Dover, Mineola, 2007)MATHGoogle Scholar
  72. 72.
    A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, vol. II (Dover, Mineola, 2007)MATHGoogle Scholar
  73. 73.
    D. Montgomery, A BBGKY framework for fluid turbulence. Phys. Fluids 19(6), 802–810 (1976)MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    F. Moss, P.V.E. McClintock (eds.), Noise in Nonlinear Dynamical Systems. Volume 1: Theory of Continuous Fokker-Planck Systems (Cambridge University Press, Cambridge, 1995)Google Scholar
  75. 75.
    F. Moss, P.V.E. McClintock (eds.), Noise in Nonlinear Dynamical Systems. Volume 2: Theory of Noise Induced Processes in Special Applications (Cambridge University Press, Cambridge, 1995)Google Scholar
  76. 76.
    F. Moss, P.V.E. McClintock (eds.), Noise in Nonlinear Dynamical Systems. Volume 3: Experiments and Simulations (Cambridge University Press, Cambridge, 1995)Google Scholar
  77. 77.
    M. Muradoglu, P. Jenny, S.B. Pope, D.A. Caughey, A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows. J. Comput. Phys. 154, 342–371 (1999)MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    F. Nobile, R. Tempone, C. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    A. Nouy, A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 199(23-24), 1603–1626 (2010)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    A. Nouy, Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Comput. Methods Appl. Mech. Eng. 17, 403–434 (2010)MathSciNetMATHGoogle Scholar
  81. 81.
    A. Nouy, Low-rank tensor methods for model order reduction, in Handbook of Uncertainty Quantification (Springer International Publishing, Berlin, 2016), pp. 1–26Google Scholar
  82. 82.
    A. Nouy, Higher-order principal component analysis for the approximation of tensors in tree-based low rank formats. 1–43 (2017). arXiv:1705.00880Google Scholar
  83. 83.
    A. Nouy, O.P.L. Maître, Generalized spectral decomposition for stochastic nonlinear problems. J. Comput. Phys. 228, 202–235 (2009)MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    E. Novak, K. Ritter, Simple cubature formulas with high polynomial exactness. Constr. Approx. 15, 499–522 (1999)MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    D. Nozaki, D.J. Mar, P. Grigg, J.J. Collins, Effects of colored noise on stochastic resonance in sensory neurons. Phys. Rev. Lett. 82(11), 2402–2405 (1999)CrossRefGoogle Scholar
  86. 86.
    I.V. Oseledets, Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    A.H. Phan, P. Tichavský, A. Cichocki, CANDECOMP/PARAFAC decomposition of high-order tensors through tensor reshaping. IEEE Trans. Signal Process. 61, 4847–4860 (2013)CrossRefGoogle Scholar
  88. 88.
    A.H. Phan, P. Tichavský, A. Cichocki, Low complexity damped Gauss-Newton algorithms for CANDECOMP/ PARAFAC. SIAM J. Matrix Anal. Appl. 34, 126–147 (2013)MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    S.B. Pope, A Monte Carlo method for the PDF equations of turbulent reactive flow. Combust. Sci. Technol. 25, 159–174 (1981)CrossRefGoogle Scholar
  90. 90.
    S.B. Pope, Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23–63 (1994)MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    S.B. Pope, Simple models of turbulent flows. Phys. Fluids 23(1), 011301(1–20) (2011)Google Scholar
  92. 92.
    H. Rabitz, Ö.F. Aliş, J. Shorter, K. Shim, Efficient input–output model representations. Comput. Phys. Commun. 117(1-2), 11–20 (1999)MATHCrossRefGoogle Scholar
  93. 93.
    M. Rajih, P. Comon, R.A. Harshman, Enhanced line search: a novel method to accelerate PARAFAC. SIAM J. Matrix Anal. Appl. 30, 1128–1147 (2008)MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    M. Reynolds, G. Beylkin, A. Doostan, Optimization via separated representations and the canonical tensor decomposition. J. Comput. Phys. 348(1), 220–230 (2016)MathSciNetMATHGoogle Scholar
  95. 95.
    H.K. Rhee, R. Aris, N.R. Amundson, First-Order Partial Differential Equations. Volume 1: Theory and Applications of Single Equations (Dover, New York, 2001)Google Scholar
  96. 96.
    H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1989)MATHCrossRefGoogle Scholar
  97. 97.
    S. Rjasanow, W. Wagner, Stochastic Numerics for the Boltzmann Equation (Springer, Berlin, 2004)MATHGoogle Scholar
  98. 98.
    A. Saltelli, K. Chan, M. Scott, Sensitivity Analysis (Wiley, New York, 2000)MATHGoogle Scholar
  99. 99.
    C. Schwab, E. Suli, R.A. Todor, Sparse finite element approximation of high-dimensional transport-dominated diffusion problems. ESAIM: Math. Model. Numer. Anal. 42, 777–819 (2008)MathSciNetMATHCrossRefGoogle Scholar
  100. 100.
    M.F. Shlesinger, T. Swean, Stochastically Excited Nonlinear Ocean Structures (World Scientific, Singapore, 1998)MATHCrossRefGoogle Scholar
  101. 101.
    R. Shu, J. Hu, S. Jin, A stochastic Galerkin method for the Boltzmann equation with multi-dimensional random inputs using sparse wavelet bases. Numer. Math. Theor. Methods Appl. 10(2), 465–488 (2017)MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl. 4, 240–243 (1963)MATHGoogle Scholar
  103. 103.
    K. Sobczyk, Stochastic Differential Equations: With Applications to Physics and Engineering (Springer, Berlin, 2001)MATHGoogle Scholar
  104. 104.
    I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    H.D. Sterck, A nonlinear GMRES optimization algorithm for canonical tensor decomposition. SIAM J. Sci. Comput. 34, A1351–A1379 (2012)MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    H.D. Sterck, K. Miller, An adaptive algebraic multigrid algorithm for low-rank canonical tensor decomposition. SIAM J. Sci. Comput. 35, B1–B24 (2012)MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    R.L. Stratonovich, Some Markov methods in the theory of stochastic processes in nonlinear dynamical systems, in Noise in Nonlinear Dynamical Systems, vol. 1, ed. by F. Moss, P.V.E. McClintock (Cambridge University Press, Cambridge, 1989), pp. 16–68CrossRefGoogle Scholar
  108. 108.
    A. Uschmajew, Local convergence of the alternating least squares algorithm for canonical tensor approximation. SIAM J. Matrix Anal. Appl. 33, 639–652 (2012)MathSciNetMATHCrossRefGoogle Scholar
  109. 109.
    L. Valino, A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust. 60(2), 157–172 (1998)MATHCrossRefGoogle Scholar
  110. 110.
    D. Venturi, The numerical approximation of functional differential equations. 1–113 (2016). arXiv: 1604.05250Google Scholar
  111. 111.
    D. Venturi, G.E. Karniadakis, New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs. J. Comput. Phys. 231(21), 7450–7474 (2012)MathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    D. Venturi, G.E. Karniadakis, Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems. Proc. R. Soc. A 470(2166), 1–20 (2014)MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    D. Venturi, M. Choi, G.E. Karniadakis, Supercritical quasi-conduction states in stochastic Rayleigh-Bénard convection. Int. J. Heat Mass Transfer 55(13–14), 3732–3743 (2012)CrossRefGoogle Scholar
  114. 114.
    D. Venturi, T.P. Sapsis, H. Cho, G.E. Karniadakis, A computable evolution equation for the probability density function of stochastic dynamical systems. Proc. R. Soc. A 468, 759–783 (2012)MATHCrossRefGoogle Scholar
  115. 115.
    C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Mechanics, vol. 1, ed. by S. Friedlander, D. Serre (North-Holland, Amsterdam, 2002), pp. 71–305Google Scholar
  116. 116.
    Z. Wang, Q. Tang, W. Guo, Y. Cheng, Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations. J. Comput. Phys. 314, 244–263 (2016)MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    D. Xiu, Efficient collocational approach for parametric uncertainty analysis. Commun. Comput. Phys. 2(2), 293–309 (2007)MathSciNetMATHGoogle Scholar
  118. 118.
    D. Xiu, J. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    L. Yan, L. Guo, D. Xiu, Stochastic collocation algorithms using 1-minimization. Int. J. Uncertain. Quantif. 2, 279–293 (2012)MathSciNetMATHCrossRefGoogle Scholar
  120. 120.
    Y. Yang, C.W. Shu, Discontinuous Galerkin method for hyperbolic equations involving δ-singularities: negative-order norm error estimate and applications. Numer. Math. 124, 753–781 (2013)MathSciNetMATHCrossRefGoogle Scholar
  121. 121.
    X. Yang, M. Choi, G.E. Karniadakis, Adaptive ANOVA decomposition of stochastic incompressible and compressible fluid flows. J. Comput. Phys. 231, 1587–1614 (2012)MathSciNetMATHCrossRefGoogle Scholar
  122. 122.
    X. Yang, H. Lei, N.A. Baker, G. Lin, Enhancing sparsity of Hermite polynomial expansions by iterative rotations. J. Comput. Phys. 307, 94–109 (2016)MathSciNetMATHCrossRefGoogle Scholar
  123. 123.
    C. Zeng, H. Wang, Colored noise enhanced stability in a tumor cell growth system under immune response. J. Stat. Phys. 141(5), 889–908 (2010)MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Z. Zhang, M. Choi, G.E. Karniadakis, Anchor points matter in ANOVA decomposition, in Proceedings of ICOSAHOM’09, ed. by E. Ronquist, J. Hesthaven (Springer, Berlin, 2010)Google Scholar
  125. 125.
    Z. Zhang, M. Choi, G.E. Karniadakis, Error estimates for the ANOVA method with polynomial chaos interpolation: tensor product functions. SIAM J. Sci. Comput. 34(2), 1165–1186 (2012)MathSciNetMATHCrossRefGoogle Scholar
  126. 126.
    G. Zhou, A. Cichocki, S. Xie, Accelerated canonical polyadic decomposition by using mode reduction. IEEE Trans. Neural Netw. Learn Syst. 24, 2051–2062 (2013)CrossRefGoogle Scholar
  127. 127.
    R. Zwanzig, Memory effects in irreversible thermodynamics. Phys. Rev. 124, 983–992 (1961)MATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Heyrim Cho
    • 1
  • Daniele Venturi
    • 2
  • George Em Karniadakis
    • 3
  1. 1.University of MarylandCollege ParkUSA
  2. 2.University of CaliforniaSanta CruzUSA
  3. 3.Brown UniversityProvidenceUSA

Personalised recommendations