Enabling Internet-of-Things with Opportunities Brought by Emerging Devices, Circuits and Architectures

  • Xueqing LiEmail author
  • Kaisheng Ma
  • Sumitha George
  • John Sampson
  • Vijaykrishnan NarayananEmail author
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 508)


In recent years, the concept of Internet-of-Things (IoT) has attracted significant interests. Required by the applications, the IoT power optimization has become the key concern, which relies on innovations from all levels of device, circuits, and architectures. Meanwhile, the energy efficiency of existing IoT implementations based on the CMOS technology is fundamentally limited by the device physics and also the circuits and systems built on it. This chapter focuses on a different dimension, exploring how emerging beyond-CMOS devices, such as tunnel field effect transistor (TFET) and negative capacitance FET (NCFET), and the circuits and architectures built upon them, could extend the low-power design space to enable IoT applications with beyond-CMOS features.


Internet-of-things Emerging devices Tunnel FET Negative capacitance FET Energy harvesting Nonvolatile memory Nonvolatile computing 



This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet centers, sponsored by MARCO and DARPA, by NSF awards 1160483 (ASSIST), and NSF Expeditions in Computing Award-1317560.


  1. 1.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Networks 54, 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Li, X., Heo, U.D., Ma, K., Narayanan, V., Liu, H., Datta, S.: Rf-powered systems using steep-slope devices. In: 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS) (2014)Google Scholar
  3. 3.
    Kim, S., Vyas, R., Bito, J., Niotaki, K., Collado, A., Georgiadis, A., Tentzeris, M.M.: Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc. IEEE 102, 1649–1666 (2014)CrossRefGoogle Scholar
  4. 4.
    Nikonov, D.E., Young, I.A.: Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101, 2498–2533 (2013)CrossRefGoogle Scholar
  5. 5.
    Lu, L., Li, X., Narayanan, V., Datta, S.: A reconfigurable low-power BDD logic architecture using ferroelectric single-electron transistors. IEEE Trans. Electron Devices 62(3), 1052–1057 (2015). doi: 10.1109/ted.2015.2395252 CrossRefGoogle Scholar
  6. 6.
    Roy, K., Sharad, M., Fan, D., Yogendra, K.: Computing with spin-transfer-torque devices: prospects and perspectives. In: 2014 IEEE Computer Society Annual Symposium on VLSI (2014)Google Scholar
  7. 7.
    Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010)CrossRefGoogle Scholar
  8. 8.
    Khan, A.I., Yeung, C.W., Hu, C., Salahuddin, S.: Ferroelectric negative capacitance MOSFET: capacitance tuning & antiferroelectric operation. In: 2011 International Electron Devices Meeting (2011)Google Scholar
  9. 9.
    Swaminathan, K., Liu, H., Li, X., Kim, M.S., Sampson, J., Narayanan, V.: Steep slope devices: enabling new architectural paradigms. In: Proceedings of the 51st Annual Design Automation Conference on Design Automation Conference - DAC 2014 (2014)Google Scholar
  10. 10.
    Brito, M.A.G.D., Galotto, L., Sampaio, L.P., Melo, G.D.A.E., Canesin, C.A.: Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron. 60, 1156–1167 (2013)CrossRefGoogle Scholar
  11. 11.
    Liu, H., Li, X., Vaddi, R., Ma, K., Datta, S., Narayanan, V.: Tunnel FET RF rectifier design for energy harvesting applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 4, 400–411 (2014)CrossRefGoogle Scholar
  12. 12.
    Heo, U., Li, X., Liu, H., Gupta, S., Datta, S., Narayanan, V.: A high-efficiency switched-capacitance HTFET charge pump for low-input-voltage applications. In: 2015 28th International Conference on VLSI Design (2015)Google Scholar
  13. 13.
    Ma, K., Zheng, Y., Li, S., Swaminathan, K., Li, X., Liu, Y., Sampson, J., Xie, Y., Narayanan, V.: Architecture exploration for ambient energy harvesting nonvolatile processors. In: 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA) (2015)Google Scholar
  14. 14.
    Ma, K., Li, X., Li, S., Liu, Y., Sampson, J.J., Xie, Y., Narayanan, V.: Nonvolatile processor architecture exploration for energy-harvesting applications. IEEE Micro. 35, 32–40 (2015)CrossRefGoogle Scholar
  15. 15.
    Ma, K., Li, X., Swaminathan, K., Zheng, Y., Li, S., Liu, Y., Xie, Y., Sampson, J.J., Narayanan, V.: Nonvolatile processor architectures: efficient, reliable progress with unstable power. IEEE Micro. 36, 72–83 (2016)CrossRefGoogle Scholar
  16. 16.
    Liu, V., Parks, A., Talla, V., Gollakota, S., Wetherall, D., Smith, J.R.: Ambient backscatter. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM - SIGCOMM 2013 (2013)Google Scholar
  17. 17.
    Ueki, M., Takeuchi, K., Yamamoto, T., Tanabe, A., Ikarashi, N., Saitoh, M., Nagumo, T., Sunamura, H., Narihiro, M., Uejima, K., Masuzaki, K., Furutake, N., Saito, S., Yabe, Y., Mitsuiki, A., Takeda, K., Hase, T., Hayashi, Y.: Low-power embedded ReRAM technology for IoT applications. In: 2015 Symposium on VLSI Technology (VLSI Technology) (2015)Google Scholar
  18. 18.
    George, S., Gupta, S., Narayanan, V., Ma, K., Aziz, A., Li, X., Khan, A., Salahuddin, S., Chang, M.-F., Datta, S., Sampson, J.: Nonvolatile memory design based on ferroelectric FETs. In: Proceedings of the 53rd Annual Design Automation Conference on - DAC 2016 (2016)Google Scholar
  19. 19.
    Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., Xie, Y.: PRIME: a novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA) (2016)Google Scholar
  20. 20.
    Roman, R., Najera, P., Lopez, J.: Securing the internet of things. Computer 44, 51–58 (2011)CrossRefGoogle Scholar
  21. 21.
    Kim, M.S., Liu, H., Swaminathan, K., Li, X., Datta, S., Narayanan, V.: Enabling power-efficient designs with III-V tunnel FETs. In: 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (2014)Google Scholar
  22. 22.
    Liu, H., Shoaran, M., Li, X., Datta, S., Schmid, A., Narayanan, V.: Tunnel FET-based ultra-low power, low-noise amplifier design for bio-signal acquisition. In: Proceedings of the 2014 International Symposium on Low Power Electronics and Design - ISLPED 2014 (2014)Google Scholar
  23. 23.
    Tsai, W.-Y., Liu, H., Li, X., Narayanan, V.: Low-power high-speed current mode logic using Tunnel-FETs. In: 2014 22nd International Conference on Very Large Scale Integration (VLSI-SoC) (2014)Google Scholar
  24. 24.
    Kim, M.S., Liu, H., Li, X., Datta, S., Narayanan, V.: A steep-slope tunnel FET based SAR analog-to-digital converter. IEEE Trans. Electron Devices 61, 3661–3667 (2014)CrossRefGoogle Scholar
  25. 25.
    Kim, M.S., Li, X., Liu, H., Sampson, J., Datta, S., Narayanan, V.: Exploration of low-power High-SFDR current-steering D/A converter design using steep-slope heterojunction tunnel FETs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(6), 2299–2309 (2016)Google Scholar
  26. 26.
    Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008)CrossRefGoogle Scholar
  27. 27.
    Hu, C., Salahuddin, S., Lin, C.-I., Khan, A.: 0.2 V adiabatic NC-FinFET with 0.6 mA/µm ION and 0.1nA/µm IOFF. In: 2015 73rd Annual Device Research Conference (DRC) (2015)Google Scholar
  28. 28.
    Lee, M.H., Wei, Y.-T., Chu, K.-Y., Huang, J.-J., Chen, C.-W., Cheng, C.-C., Chen, M.-J., Lee, H.-Y., Chen, Y.-S., Lee, L.-H., Tsai, M.-J.: Steep slope and near non-hysteresis of FETs With antiferroelectric-like HfZrO for low-power electronics. IEEE Electron Device Lett. 36, 294–296 (2015)CrossRefGoogle Scholar
  29. 29.
    Jo, J., Choi, W.Y., Park, J.-D., Shim, J.W., Yu, H.-Y., Shin, C.: Negative capacitance in organic/ferroelectric capacitor to implement steep switching MOS devices. Nano Lett. 15, 4553–4556 (2015)CrossRefGoogle Scholar
  30. 30.
    Khan, A.I., Chatterjee, K., Duarte, J.P., Lu, Z., Sachid, A., Khandelwal, S., Ramesh, R., Hu, C., Salahuddin, S.: Negative capacitance in short-channel FinFETs externally connected to an epitaxial ferroelectric capacitor. IEEE Electron Device Lett. 37, 111–114 (2016)CrossRefGoogle Scholar
  31. 31.
    Jo, J., Shin, C.: Negative capacitance field effect transistor with hysteresis-free Sub-60-mV/Decade switching. IEEE Electron Device Lett. 37, 245–248 (2016)CrossRefGoogle Scholar
  32. 32.
    Li, K.-S., Chen, P.-G., Lai, T.-Y., Lin, C.-H., Cheng, C.-C., Chen, C.-C., Wei, Y.-J., Hou, Y.-F., Liao, M.-H., Lee, M.-H., Chen, M.-C., Sheih, J.-M., Yeh, W.-K., Yang, F.-L., Salahuddin, S., Hu, C.: Sub-60 mV-swing negative-capacitance FinFET without hysteresis. In: 2015 IEEE International Electron Devices Meeting (IEDM) (2015)Google Scholar
  33. 33.
    Lee, M.H., Chen, P.-G., Liu, C., Chu, K.-Y., Cheng, C.-C., Xie, M.-J., Liu, S.-N., Lee, J.-W., Huang, S.-J., Liao, M.-H., Tang, M., Li, K.-S., Chen, M.-C.: Prospects for ferroelectric HfZrOx FETs with experimentally CET = 0.98 nm, SSfor = 42 mV/dec, SSrev = 28 mV/dec, switch-off 0.2 V, and hysteresis-free strategies. In: 2015 IEEE International Electron Devices Meeting (IEDM) (2015)Google Scholar
  34. 34.
    George, S., Aziz, A., Li, X., Datta, S., Sampson, J., Gupta, S., Narayanan, V.: NCFET based logic for energy harvesting systems. In: SRC TECHCON 2015 (2015)Google Scholar
  35. 35.
    George, S., Aziz, A., Li, X., Kim, M.S., Datta, S., Sampson, J., Gupta, S., Narayanan, V.: Device circuit co design of FEFET based logic for low voltage processors. In: 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (2016)Google Scholar
  36. 36.
    Aziz, A., Ghosh, S., Datta, S., Gupta, S.: Physics-based circuit-compatible SPICE model for ferroelectric transistors. IEEE Electron Device Lett. 37, 1 (2016)Google Scholar
  37. 37.
    Asbeck, P.M., Lee, K., Min, J.: Projected performance of heterostructure tunneling FETs in low power microwave and mm-wave applications. IEEE J. Electron Devices Soc. 3, 122–134 (2015)CrossRefGoogle Scholar
  38. 38.
    Datta, S., Bijesh, R., Liu, H., Mohata, D., Narayanan, V.: Tunnel transistors for energy efficient computing. In: 2013 IEEE International Reliability Physics Symposium (IRPS) (2013)Google Scholar
  39. 39.
    Saripalli, V., Datta, S., Narayanan, V., Kulkarni, J.P.: Variation-tolerant ultra low-power heterojunction tunnel FET SRAM design. In: 2011 IEEE/ACM International Symposium on Nanoscale Architectures (2011)Google Scholar
  40. 40.
    Kim, M.S., Cane-Wissing, W., Li, X., Sampson, J., Datta, S., Gupta, S.K., Narayanan, V.: Comparative area and parasitics analysis in FinFET and heterojunction vertical TFET standard cells. ACM J. Emerg. Technol. Comput. Syst. 12, 1–23 (2016)CrossRefGoogle Scholar
  41. 41.
    Swaminathan, K., Liu, H., Sampson, J., Narayanan, V.: An examination of the architecture and system-level tradeoffs of employing steep slope devices in 3D CMPs. ACM SIGARCH Comput. Archit. News. 42, 241–252 (2014)CrossRefGoogle Scholar
  42. 42.
    Wang, Y., Liu, Y., Li, S., Zhang, D., Zhao, B., Chiang, M.-F., Yan, Y., Sai, B., Yang, H.: A 3us wake-up time nonvolatile processor based on ferroelectric flip-flops. In: 2012 Proceedings of the ESSCIRC (ESSCIRC) (2012)Google Scholar
  43. 43.
    Pandey, R., Madan, H., Liu, H., Chobpattana, V., Barth, M., Rajamohanan, B., Hollander, M.J., Clark, T., Wang, K., Kim, J.- H., Gundlach, D., Cheung, K.P., Suehle, J., Engel-Herbert, R., Stemmer, S., Datta, S.: Demonstration of p-type In0.7Ga0.3As/GaAs0.35Sb0.65 and n-type GaAs0.4Sb0.6/In0.65Ga0.35As complimentary Heterojunction Vertical Tunnel FETs for ultra-low power logic. In: 2015 Symposium on VLSI Technology (VLSI Technology) (2015)Google Scholar
  44. 44.
    Rajamohanan, B., Pandey, R., Chobpattana, V., Vaz, C., Gundlach, D., Cheung, K.P., Suehle, J., Stemmer, S., Datta, S.: 0.5 V supply voltage operation of In0.65Ga0.35As/GaAs0.4Sb0.6Tunnel FET. IEEE Electron Device Lett. 36, 20–22 (2015)CrossRefGoogle Scholar
  45. 45.
    Morita, Y., Mori, T., Fukuda, K., Mizubayashi, W., Migita, S., Matsukawa, T., Endo, K., O’uchi, S., Liu, Y., Masahara, M., Ota, H.: Experimental realization of complementary p- and n- tunnel FinFETs with subthreshold slopes of less than 60 mV/decade and very low (pA/μm) off-current on a Si CMOS platform. In: 2014 IEEE International Electron Devices Meeting (2014)Google Scholar
  46. 46.
    Liu, Y., Yang, H., Wang, Y., Wang, C., Sheng, X., Li, S., Zhang, D., Sun, Y.: Power system design and task scheduling for photovoltaic energy harvesting based nonvolatile sensor nodes. In: Lin, Y.-L., et al. (eds.) Smart Sensors and Systems, pp. 243–277. Springer, Cham (2015)Google Scholar
  47. 47.
    Zhang, D., Liu, Y., Li, J., Xue, C.J., Li, X., Wang, Y., Yang, H.: Solar power prediction assisted intra-task scheduling for nonvolatile sensor nodes. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35, 724–737 (2016)CrossRefGoogle Scholar
  48. 48.
    Liu, Y., Wang, Z., Lee, A., Su, F., Lo, C.-P., Yuan, Z., Lin, C.-C., Wei, Q., Wang, Y., King, Y.-C., Lin, C.-J., Khalili, P., Wang, K.-L., Chang, M.-F., Yang, H.: 4.7 A 65 nm ReRAM-enabled nonvolatile processor with 6 × reduction in restore time and 4 × higher clock frequency using adaptive data retention and self-write-termination nonvolatile logic. In: 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016)Google Scholar
  49. 49.
    Ma, K., Li, X., Liu, Y., Sampson, J., Xie, Y., Narayanan, V.: Dynamic machine learning based matching of nonvolatile processor microarchitecture to harvested energy profile. In: 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2015)Google Scholar
  50. 50.
    Li, Q., Zhao, M., Hu, J., Liu, Y., He, Y., Xue, C.J.: Compiler directed automatic stack trimming for efficient non-volatile processors. In: Proceedings of the 52nd Annual Design Automation Conference on - DAC 2015 (2015)Google Scholar
  51. 51.
    Xie, M., Pan, C., Hu, J., Yang, C., Chen, Y.: Checkpoint-aware instruction scheduling for nonvolatile processor with multiple functional units. In: The 20th Asia and South Pacific Design Automation Conference (2015)Google Scholar
  52. 52.
    Wang, Y., Liu, Y., Wang, C., Li, Z., Sheng, X., Lee, H.G., Chang, N., Yang, H.: Storage-Less and Converter-Less Photovoltaic Energy Harvesting with Maximum Power Point Tracking for Internet of Things. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 35, 173–186 (2016)CrossRefGoogle Scholar
  53. 53.
    Ma, K., Li, X., et al.: Dynamic power and energy management for energy harvesting nonvolatile processor systems. ACM Trans. Embed. Comput. Syst. (TECS) 16(4), 107:1–107:23 (2017)Google Scholar
  54. 54.
    Ma, K., Li, X., et al.: Spendthrift: machine learning based resource and frequency scaling for ambient energy harvesting nonvolatile processors. In: ASP-DAC (2017)Google Scholar
  55. 55.
    Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: MiBench: a free, commercially representative embedded benchmark suite. In: Proceedings of the Fourth Annual IEEE International Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538), pp. 3–14 (2001)Google Scholar
  56. 56.
    Kimura, H., Fuchikami, T., Marumoto, K., Fujimori, Y., Izumi, S., Kawaguchi, H., Yoshimoto, M.: A 2.4 pJ ferroelectric-based non-volatile flip-flop with 10-year data retention capability. In: 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC), KaoHsiung, pp. 21–24 (2014)Google Scholar
  57. 57.
    Ma, K., Li, X., Sampson, J., Xie, Y., Liu, Y., Narayanan, V.: Nonvolatile processor optimization for ambient energy harvesting scenarios. In: The 15th Non-volatile Memory Technology Symposium (NVMTS), pp. 1–3 (2015)Google Scholar
  58. 58.
    Li, X., Ma, K., George, S., Sampson, J., Narayanan, V.: Enabling Internet-of-Things: Opportunities brought by emerging devices, circuits, and architectures. In: 2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Tallinn, pp. 1–6 (2016)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations