Advertisement

Ebstein’s Malformation: Does Echocardiographic Assessment Determine Surgical Repair?

  • Norman H. SilvermanEmail author
Chapter

Abstract

Ebstein’s malformation is a complex lesion whose spectrum varies from the serious, when there is marked valvar dysplasia and deformity, to being relatively benign in nature. It is, therefore, impossible to provide a single option for treatment without understanding both the developmental aspects of this lesion and the fetal and neonatal presentations affecting not only the heart, but also other organs such as the lungs. An echocardiographer approaching this condition must take cognizance of many issues that are of critical importance when approaching the echocardiogram, which, while it cannot determine the repair on its own, is certainly a major determinant in deciding the type of repair needed.

Keywords

Ultrasound Preoperative evaluation 

Supplementary material

Video 13.1

This Doppler color flow superimposition on a cross-sectional image shows tricuspid regurgitation (TR) (MOV 923 kb)

Video 13.2a

Left. Pulmonary valvar maldevelopment either causes atresia, stenosis or regurgitation that can be observed by fetal echocardiography (MOV 1894 kb)

Video 13.2b

Right. Pulmonary valvar maldevelopment either causes atresia, stenosis or regurgitation that can be observed by fetal echocardiography (MOV 954 kb)

Video 13.3a

Bottom left. Fetus with varying severities (MOV 628 kb)

Video 13.3b

Bottom right. Fetus with varying severities (MOV 1740 kb)

Video 13.3c

Top left. Fetus with varying severities (MOV 1497 kb)

Video 13.3d

Top right. Fetus with varying severities (MOV 840 kb)

Video 13.4a

Bottom. A 36-week-old fetus with marked enlargement of the right atrium (RA) and an atrial septum which is aneurysmal (ASA), bulging into the left atrium (LA) (MOV 556 kb)

Video 13.4b

Top. A 36-week-old fetus with marked enlargement of the right atrium (RA) and an atrial septum which is aneurysmal (ASA), bulging into the left atrium (LA) (MOV 554 kb)

Video 13.5a

Top. Progressive displacement of the tricuspid septal leaflet with progressive severity of the disease (MOV 904 kb)

Video 13.5b

Middle. Progressive displacement of the tricuspid septal leaflet with progressive severity of the disease (MOV 260 kb)

Video 13.6

Infant with severe Ebstein’s malformation without systolic cooptation of a thickened and restrictive tricuspid valve (MOV 233 kb)

Video 13.7a

Top left. Leaflet pathology (MOV 649 kb)

Video 13.7b

Top right. Leaflet pathology (MOV 672 kb)

Video 13.7c

Bottom left. Leaflet pathology (MOV 283 kb)

Video 13.7d

RLP. Leaflet pathology (MOV 306 kb)

Video 13.8

Cordal attachments of the anterior and mural leaflets of the valve to the underlying myocardium (MOV 133 kb)

Video 13.9

Cordal attachments of the anterior and mural leaflets of the valve to the underlying myocardium (MOV 1542 kb)

Video 13.10

Cordal attachments of the anterior and mural leaflets of the valve to the underlying myocardium (MOV 592 kb)

Video 13.11

Late diastole in an infant (MOV 774 kb)

Video 13.12a

Top. Ventricular “pancaking” and the attachment of the tricuspid valvar leaflets and their attachment to the underlying myocardium (MOV 384 kb)

Video 13.12b

Bottom Ventricular “pancaking” and the attachment of the tricuspid valvar leaflets and their attachment to the underlying myocardium (MOV 476 kb)

Video 13.13

Coronary sinus and the mural leaflet of the tricuspid valve (MOV 345 kb)

Video 13.14

Patency of the arterial duct (MOV 401 kb)

Video 13.15

Ventricular septal defect (MOV 3502 kb)

Video 13.16

Three-dimensional echocardiography affords a tremendous opportunity for defining issues related to surgical repair, including a true picture of leaflet mobility that the surgeon will not be able to emulate, as well as orifice size and points of origin of valvar insufficiency (MOV 1158 kb)

Video 13.17

Three-dimensional echocardiography affords a tremendous opportunity for defining issues related to surgical repair, including a true picture of leaflet mobility that the surgeon will not be able to emulate, as well as orifice size and points of origin of valvar insufficiency (MOV 1483 kb)

References

  1. 1.
    Silverman NH. Anatomic definition and imaging of Ebstein’s malformation. In: Reddington AN, Van Arsdell GS, Anderson RH, editors. Congenital diseases of the right heart. London: Springer; 2009.Google Scholar
  2. 2.
    Ports TA, Silverman NH, Schiller NB. Two-dimensional assessment of Ebstein’s anomaly. Circulation. 1978;58:336.CrossRefPubMedGoogle Scholar
  3. 3.
    Roberson DA, Silverman NH. Ebstein’s anomaly: echocardiographic and clinical features in the fetus and neonate. J Am Coll Cardiol. 1989;14:1300–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Schreiber C, Cook A, Ho S-Y, Augustin N, Anderson RH. Morphologic spectrum of Ebstein’s malformation: revisitation relative to surgical repair. J Thorac Cardiovasc Surg. 1999;117:148–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Arizmendi AF, Pineda LF, Jiménez CQ, Azcárate MJM, Sarachaga IH, Urroz E, de León JP, Moya JL, Jiménez MQ. The clinical profile of Ebstein’s malformation as seen from the fetus to the adult in 52 patients. Cardiol Young. 2004;14:55–63.CrossRefGoogle Scholar
  6. 6.
    Attenhofer-Jost CJ, Connolly HM, Edwards WD, Hayes D, Warnes CA, Danielson GK. Ebstein’s anomaly- review of a multifaceted congenital cardiac lesion. Swiss Med Weekly. 2005;135:269–81.Google Scholar
  7. 7.
    Celermajer DS, Dodd SM, Greenwald SE, et al. Morbid anatomy in neonates with Ebstein’s anomaly of the tricuspid valve: pathophysiological and clinical implications. J Am Coll Cardiol. 1992;19:1049–53.CrossRefPubMedGoogle Scholar
  8. 8.
    Celermajer DS, Cullen S, Sullivan ID, Spiegelhalter DJ, Wyae KH, Deanfield JE. Outcome in neonates with Ebstein’s anomaly. J Am Coll Cardiol. 1992;19:1041–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Celermajer DS, Bull C, Till JA, Cullen S, Vassillikos VP, Sullivan ID, Allan L, N Annopoulos P, Sommerville J, Deanfield JE. Ebstein’s anomaly: presentation and outcome from fetus to adult. J Am Coll Cardiol. 1994;23(1):170–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Hornberger LK, Sahn DJ, Kleinman CS, Copel JA, Reed KL. Tricuspid valve disease with significant tricuspid insufficiency in the fetus: diagnosis and outcome. J Am Coll Cardiol. 1991;17:167–73.CrossRefPubMedGoogle Scholar
  11. 11.
    Shiina A, Seward JB, Edwards WD, Hagler DJ, Tajik AJ. Two-dimensional echocardiographic spectrum of Ebstein’s anomaly: detailed anatomic assessment. J Am Coll Cardiol. 1984;3:356–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Shiina A, Seward JB, Tajik AJ, Hagler DJ, Danielson GK. Two dimensional echocardiographic-surgical correlation in Ebstein’s malformation: preoperative determination of patients requiring tricuspid valve application vs. replacement. Circulation. 1983;68:534–44.CrossRefPubMedGoogle Scholar
  13. 13.
    Freud LR, Escobar-Diaz M, Kalish B, et al. Perinatal outcomes after fetal diagnosis of Ebstein anomaly or tricuspid valve dysplasia in the current era: a multi-center study. J Am Coll Cardiol. 2014;12(63):A473.CrossRefGoogle Scholar
  14. 14.
    Lee AHS, Moore IE, Nuala LK, Fagg NLK, Cook AC, Kakadekar AP, Allan LD, Keeton BL, Anderson RH. Histological changes in the left and right ventricle in hearts with Ebstein’s malformation and tricuspid valvar dysplasia: a morphometric study of patients dying in the fetal and perinatal periods. Cardiovascu Path. 1995;4:19–24.CrossRefGoogle Scholar
  15. 15.
    Andrews RE, Tibby SM Sharland G Simpson JM. Prediction of outcome of tricuspid valve malformations diagnosed during fetal life. Cardiol Young. 2006;16(Suppl):6–19.Google Scholar
  16. 16.
    McElhinney DB, Salvin JA, Colan SD, Thiagarajan R, Crawford EC, Marcus EN, del Nido Pedro J, Tworetzky W. Improving outcomes in fetuses and neonates with congenital displacement (Ebstein’s malformation) or dysplasia of the tricuspid valve. Am J Cardiol. 2005;96:582–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Inamura N, Taketazu M, Smallhorn JF, Hornberger LK. Left ventricular myocardial performance in the fetus with severe tricuspid valve disease and tricuspid insufficiency. Am J Perinatol. 2005;22:91–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Kohl T. Chronic intermittent materno-fetal hyperoxygenation in late gestation may improve on hypoplastic cardiovascular structures associated with cardiac malformations in human fetuses. Pediatr Cardiol. 2010;31:250–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Rasanen J, Wood DC, Debbs RH, Cohen J, Weiner S, James C, Huhta JC. Reactivity of the human fetal pulmonary circulation to maternal hyperoxygenation increases during the second half of pregnancy. a randomized study. Circulation. 1998;97:257–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Wald RM, Adatia I, Glen S, Van Arsdell Glen S, Hornberger LK. Relation of limiting ductal patency to survival in neonatal Ebstein’s anomaly. Am J Cardiol. 2005;96:851–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Dearani JA, Said SM, Burkhart HM, Pike RB, O’Leary PW, Cetta F. Strategies for tricuspid re-repair in Ebstein malformation using the cone technique. Ann Thorac Surg. 2013;96:202–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Bove EL, Hirsch JC, Ohye RG, Devaney EJ. How I manage neonatal Ebstein’s anomaly. Semin Thorac Cardiovasc Surg Pediatr Card Surg Ann. 2009;12:63–5.CrossRefGoogle Scholar
  23. 23.
    Starnes VA, Pitlick PT, Bernstein D, Griffin ML, Choy M, Shumway NE. Ebstein’s malformation appearing in the neonate. A new surgical approach. J Thorac Cardiovasc Surg. 1991;101:1082–7.PubMedGoogle Scholar
  24. 24.
    Reemtsen BL, Fagan BT, Wells WJ, Starnes VA, Current MD. surgical therapy for Ebstein anomaly in neonates. J Thorac Cardiovasc Surg. 2006;132:1285–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Watanabe M, Harada Y, Takeuchi T, Satomi G, Yasukouchi S. Modified starnes operation for neonatal Ebstein’s anomaly. Ann Thorac Surg. 2002;74:917–9.CrossRefGoogle Scholar
  26. 26.
    Pflaumer A, Eicken A, Augustin N, Hess J. Symptomatic neonates with Ebstein anomaly. J Thorac Cardiovasc Surg. 2004;127:1208–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Carpentier A, Chauvaud S, Mace L, et al. A new reconstructive operation for Ebstein anomaly of the tricuspid valve. J Thorac Cardiovasc Surg. 1988;96:92–101.PubMedGoogle Scholar
  28. 28.
    Chavaud S, Fuzellier JF, Berrebi A, et al. Bi-directional cavopulmonary shunt associated with ventriculo and valvuloplasty in Ebstein’s malformation: benefits in high risk patients. Eur J Cardiothorac Surg. 1998;13:514–9.CrossRefGoogle Scholar
  29. 29.
    Chauvaud SM, Mihaileanu SA, Gaer JAR, Carpentier AC. Surgical treatment of Ebstein’s malformation—the “Hôpital Broussais” experience. Cardiol Young. 1996;6:4–11.CrossRefGoogle Scholar
  30. 30.
    Brown ML, Dearani JA, Danielson GK, Cetta F, Connolly HM, Warnes CA, Li Z, Hodge DO, Driscoll DJ. The outcomes of operations for 539 patients with Ebstein anomaly. J Thorac Cardiovasc Surg. 2008;135(5):1120–36.CrossRefPubMedGoogle Scholar
  31. 31.
    Knott-Craig CJ, Overholt ED, Ward KE, Ringewald JM, Baker SS, Razook JD. Repair of Ebstein’s malformation in the symptomatic neonate: an evolution of technique with 7-year follow-up. Ann Thorac Surg. 2002;73:1786–92.CrossRefPubMedGoogle Scholar
  32. 32.
    da Silva JP, José Francisco Baumgratz JF, da Fonseca L, Franchi SM, Lopes LM, Tavares GMP, Soares AM, Moreira LF, Barbero-Marcial MD. The cone reconstruction of the tricuspid valve in Ebstein’s anomaly. The operation: early and midterm results. J Thorac Cardiovasc Surg. 2007;133:215–23.CrossRefPubMedGoogle Scholar
  33. 33.
    Anderson HN, Dearani JA, Said SM, Norris MD, Pundi KN, Miller AR, Cetta ML, Eidem BW, O’Leary PW, Cetta F. Cone reconstruction in children with Ebstein anomaly: the mayo clinic experience. Congenit Heart Dis. 2014;9(3):266–71.CrossRefPubMedGoogle Scholar
  34. 34.
    Marianeschi SM, McElhinney DB, Reddy VM, Silverman NH, Hanley FL. Alternative approach to the repair of Ebstein’s malformation: intracardiac repair with ventricular unloading. Ann Thorac Surg. 1998;66:1546–50.CrossRefPubMedGoogle Scholar
  35. 35.
    Malhotra SP, Petrosian E, Reddy VM, Qui M, Maeda K, Suleman S, McDonald M, Reinhartz O, Hanley F. Selective right ventricular unloading and novel concepts in Ebtein’s anomaly. Ann Thorac Surg. 2009;88:1975–81.CrossRefPubMedGoogle Scholar
  36. 36.
    Eidem BW, Tei C, O’Leary PW, Cetta F, Seward JB. Non-geometric quantitative assessment of right and left ventricular function: myocardial performance index in normal children and patients with Ebstein’s anomaly. J Am Soc Echocardiogr. 1998;11:849–56.CrossRefPubMedGoogle Scholar
  37. 37.
    Bharucha T, Anderson RH, Lim ZS, Vettukatti JJ. Multiplanar review of three-dimensional echocardiography gives new insights into the morphology of Ebstein’s Malformation. Cardiol Young. 2010;20:49–53.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Pediatric CardiologyStanford UniversityStanfordUSA
  2. 2.Division of Pediatric CardiologyUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations