Flame Retardant Biobased Polymers

  • Rodolphe SonnierEmail author
  • Aurélie Taguet
  • Laurent Ferry
  • José-Marie Lopez-Cuesta
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Environmental concerns arising from the limits to the waste management of plastics have entailed a strong development of biobased and biodegradable polymers for a wide range of applications. Tailoring new plastics and composites within a perspective of sustainable development aims to create an environmentally safe alternative to oil based polymer materials. Different categories of these polymers can be distinguished according to their complete or only partial renewable character as well as their ability to biodegrade.


  1. 1.
    Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics. Utrecht University,
  2. 2. (2016) Final report FP 7 European project, grant agreement No. 289196
  3. 3.
    Alongi J, Han Z, Bourbigot S (2015) Intumescence: tradition versus novelty. A comprehensive review. Prog Polym Sci 51:28–73CrossRefGoogle Scholar
  4. 4.
    Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19:628–635CrossRefGoogle Scholar
  5. 5.
    Wang X, Hu Y, Song L, Xuan S, Xing W, Bai Z, Lu H (2011) Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch, biocomposites. Ind Eng Chem Res 50:713–720CrossRefGoogle Scholar
  6. 6.
    Wu K, Hu Y, Song L, Lu HD, Wang ZZ (2009) Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Ind Eng Chem Res 48:3150–3157CrossRefGoogle Scholar
  7. 7.
    Lyon RE, Walters RN (2004) Pyrolysis combustion flow calorimetry. J Anal Appl Pyrol 71:27–46CrossRefGoogle Scholar
  8. 8.
    Cayla A, Rault F, Giraud S, Salaün F, Fierro V, Celzard A (2016) PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile. Polymers 8:331–346CrossRefGoogle Scholar
  9. 9.
    Zhang R, Xiao X, Tai Q, Huang H, Yang J, Hu Y (2012) Preparation of lignin–silica hybrids and its application in intumescent flame-retardant poly(lactic acid) system. High Perform Polym 24:738–746CrossRefGoogle Scholar
  10. 10.
    Zhang X, Xiao Q, Tai H, Huang J, Yang YHu (2013) The effect of different organic modified montmorillonites (OMMTs) on the thermal properties and flammability of PLA/MCAPP/lignin systems. J Appl Polym Sci 127:4967–4973CrossRefGoogle Scholar
  11. 11.
    Morgan A, Wilkie CA (eds) (2010) Multicomponents FR systems: polymer nanocomposites combined with additional materials. In: Fire retardancy of polymeric materials. CRC Press (Chap. 12)Google Scholar
  12. 12.
    Fontaine G, Bourbigot S (2009) Intumescent polylactide: a nonflammable material. J Appl Polym Sci 113:3860–3865CrossRefGoogle Scholar
  13. 13.
    Matusinovic Z, Wilkie CA (2012) Fire retardancy and morphology of layered double hydroxide nanocomposites: a review. J Mater Chem 22:18701–18704CrossRefGoogle Scholar
  14. 14.
    Wang X, Zhou S, Xing WY, Yu B, Feng XM, Song L, Hu Y (2013) Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J Mater Chem A 1:4383–4390CrossRefGoogle Scholar
  15. 15.
    Dasari A, Yu ZZ, Cai GP, Mai YW (2013) Recent developments in the fire retardancy of polymeric materials. Prog Polym Sci 38:1357–1387CrossRefGoogle Scholar
  16. 16.
    Wang DY, Leuteritz A, Wang Y-Z, Wagenknecht U, Heinrich G (2010) Preparation and burning behaviors of flame retarding biodegradable poly(lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polym Deg Stab 95:2474–2480CrossRefGoogle Scholar
  17. 17.
    Sue HJ, Gam KT (2004) Epoxy nanocomposites based on the synthetic α-zirconium phosphate layer structure. Chem Mater 16:242–249CrossRefGoogle Scholar
  18. 18.
    Zhang R, Hu Y, Li BG, Chen ZY, Fan WC (2007) Studies on the preparation and structure of polyacrylamide/α-zirconium phosphate nanocomposites. J Mater Sci 42:5641–5646CrossRefGoogle Scholar
  19. 19.
    Liu CH, Yang YJ (2009) Effects of α-zirconium phosphate aspect ratio on the properties of polyvinyl alcohol nanocomposites. Polym Test 28:801–807CrossRefGoogle Scholar
  20. 20.
    Wang DY, Liu XQ, Wang JS, Wang YZ, Stec AA, Hull TR (2009) Preparation and characterization of a novel fire retardant PET/α-zirconium phosphate nanocomposite. Polym Degrad Stab 94:544–549CrossRefGoogle Scholar
  21. 21.
    Liu XQ, Wang DY, Wang XL, Chen L, Wang YZ (2011) Synthesis of organo-modified α-zirconium phosphate and its effect on the flame retardancy of IFR poly(lactic acid) systems. Polym Deg Stab 96:771–777CrossRefGoogle Scholar
  22. 22.
    Hu XP, Li WY, Wang YZ (2004) Synthesis and characterization of a novel nitrogen containing flame retardant. J Appl Polym Sci 94:1556–1561CrossRefGoogle Scholar
  23. 23.
    Vahabi H, Ferry L, Longuet C, Otazaghine B, Negrell-Guirao C, David G, Lopez-Cuesta J-M (2012) Combination effect of polyhedral oligomeric silsesquioxane (POSS) and a phosphorus modified PMMA, flammability and thermal stability properties. Mater Chem Phys 136:762–770CrossRefGoogle Scholar
  24. 24.
    Didane N, Giraud S, Devaux E, Lemort G (2012) A comparative study of POSS as synergists with zinc phosphinates for PET fire retardancy. Polym Degrad Stab 97:383–391CrossRefGoogle Scholar
  25. 25.
    Fox DM, Lee J, Citro CJ, Novy M (2013) Flame retarded poly(lactic acid) using POSS-modified cellulose. 1. Thermal and combustion properties of intumescing composites. Polym Degrad Stab 98:590–596CrossRefGoogle Scholar
  26. 26.
    Fox DM, Novy M, Brown K, Zammarano M, Harris RH, Murariu M, McCarthy ED, Seppala JE, Gilman JW (2014) Flame retarded poly(lactic acid) using POSS-modified cellulose. 2. Effects of intumescing flame retardant formulations on polymer degradation and composite physical properties. Polym Degrad Stab 106:54–62CrossRefGoogle Scholar
  27. 27.
    Gao L, Zheng G, Zhou Y, Hu L, Feng G, Zhang M (2014) Synergistic effect of expandable graphite, diethyl ethylphosphonate and organically-modified layered double hydroxide on flame retardancy and fire behavior of polyisocyanurate-polyurethane foam nanocomposite. Polym Degrad Stab 101:92–101CrossRefGoogle Scholar
  28. 28.
    Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900CrossRefGoogle Scholar
  29. 29.
    Zhu H, Zhu Q, Li J, Tao K, Xue L, Yan Q (2011) Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polym Degrad Stab 96:183–189CrossRefGoogle Scholar
  30. 30.
    Laachachi A, Cochez M, Leroy E, Gaudon P, Ferriol M, Lopez Cuesta JM (2006) Effect of Al2O3 and TiO2 nanoparticles and APP on thermal stability and flame retardance of PMMA. Polym Adv Technol 17:327–334CrossRefGoogle Scholar
  31. 31.
    Feng C, Liang M, Zhang Y, Jiang J, Huang J, Liu H (2016) Synergistic effect of lanthanum oxide on the flame retardant properties and mechanism of an intumescent flame retardant PLA composites. J Anal Appl Pyrol 122:241–248CrossRefGoogle Scholar
  32. 32.
    Yang HE, Chapin JT, Gandhi P, Lackhouse T (2013) Micro-scale evaluation of flammability for cable materials. In: Proceeding of 62th international wire & cable symposiumGoogle Scholar
  33. 33.
    Ke CH, Li J, Fang KY, Zhu Q-L, Zhu J, Yan Q, Wang YZ (2010) Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym Degrad Stab 95:763–770CrossRefGoogle Scholar
  34. 34.
    Shabanian M, Kang NJ, Wang DY, Wagenknecht U, Heinrich G (2013) Synthesis of aromatic aliphatic polyamide acting as adjuvant in polylactic acid (PLA)/ammonium polyphosphate (APP) system. Polym Degrad Stab 98:1036–1042CrossRefGoogle Scholar
  35. 35.
    Bocz K, Domonkos M, Igricz T, Kmetty Á, Bárány T, Marosi G (2015) Flame retarded self-reinforced poly(lactic acid) composites of outstanding impact resistance. Compos A 70:27–34CrossRefGoogle Scholar
  36. 36.
    Carosio F, Laufer G, Alongi J, Camino G, Grunlan JA (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96:745–750CrossRefGoogle Scholar
  37. 37.
    Garlotta DA (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84CrossRefGoogle Scholar
  38. 38.
    Jing J, Zhang Y, Tang X, Zhou Y, Li X, Kandola BK, Fang Z (2017) Layer by layer deposition of polyethylenimine and bio-based polyphosphate on ammonium polyphosphate: A novel hybrid for simultaneously improving the flame retardancy and toughness of polylactic acid. Polymer 108:361–371CrossRefGoogle Scholar
  39. 39.
    Levchik SV, Costa L, Camino G (1992) Effect of the fire-retardant, ammonium polyphosphate, on the thermal decomposition on of aliphatic polyamides. I. Polyamides 11 and 12. Polym Degrad Stab 36:31–41CrossRefGoogle Scholar
  40. 40.
    Dorez G, Taguet A, Ferry L, Lopez-Cuesta JM (2013) Thermal and fire behavior of natural fibers/PBS biocomposites. Polym Degrad Stab 98:87–95CrossRefGoogle Scholar
  41. 41.
    Dumazert L, Rasselet D, Pang B, Gallard B, Kennouche S, Lopez-Cuesta J-M. Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives. Polym Adv Technol (accepted)Google Scholar
  42. 42.
    Wang X, Yang H, Song L, Hu Y, Xing W, Lu H (2011) Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos Sci Technol 72:1–6CrossRefGoogle Scholar
  43. 43.
    Song L, Xuan S, Wang X, Hu Y (2012) Flame retardancy and thermal degradation behaviors of phosphate in combination with POSS in polylactide composites. Thermochim Acta 527:1–7CrossRefGoogle Scholar
  44. 44.
    Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46CrossRefGoogle Scholar
  45. 45.
    Pack S, Bobo E, Muir N, Yang K, Swaraj S, Ade H, Cao C, Korach CS, Kashiwagi T, Rafailovich MH (2012) Engineering biodegradable polymer blends containing flame retardant-coated starch/nanoparticles. Polymer 53:4787–4799CrossRefGoogle Scholar
  46. 46.
    Ju Y, Liao F, Dai X, Cao Y, Li J, Wang X (2016) Flame-retarded biocomposites of poly(lactic acid), distiller’s dried grains with solubles and resorcinol di(phenyl phosphate). Compos A 81:52–60CrossRefGoogle Scholar
  47. 47.
    Jing J, Zhang Y, Fang Z (2017) Diphenolic acid based biphosphate on the properties of polylactic acid: synthesis, fire behavior and flame retardant mechanism. Polymer 108:29–37CrossRefGoogle Scholar
  48. 48.
    Chen X, Zhuo J, Jiao C (2012) Thermal degradation characteristics of flame retardant polylactide using TG-IR. Polym Degrad Stab 97:2143–2147CrossRefGoogle Scholar
  49. 49.
    Laachachi A, Cochez M, Leroy E, Ferriol M, Lopez-Cuesta JM (2007) Fire retardant systems in poly(methyl methacrylate): interactions between metal oxide nanoparticles and phosphinates. Polym Degrad Stab 92:61–69CrossRefGoogle Scholar
  50. 50.
    Braun U, Schartel B, Ficher MA, Jäger C (2007) Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polym Degrad Stab 92:1528–1545CrossRefGoogle Scholar
  51. 51.
    Braun U, Schartel B (2008) Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fibre-reinforced poly(1,4-butylene terephthalate). Macromol Mater Eng 293:206–217CrossRefGoogle Scholar
  52. 52.
    Bourbigot S, Fontaine G (2010) Flame retardancy of polylactide: an overview. Polym Chem 1:1413–1422CrossRefGoogle Scholar
  53. 53.
    Isitman NA, Dogan M, Bayramli E, Kaynak C (2012) The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate. Polym Degrad Stab 97:1285–1296CrossRefGoogle Scholar
  54. 54.
    Lin HJ, Liu SR, Han LJ, Wang XM, Bian YJ, Dong LS (2013) Effect of a phosphorus-containing oligomer on flame-retardant, rheological and mechanical properties of poly (lactic acid). Polym Degrad Stab 98:1389–1396CrossRefGoogle Scholar
  55. 55.
    Avinc O, Day R, Carr C, Wilding M (2012) Effect of combined flame retardant, liquid repellent and softener finishes on poly(lactic acid) (PLA) fabric performance. Text Res J 82:975–984CrossRefGoogle Scholar
  56. 56.
    Cheng XW, Guan JP, Tang RC, Liu KQ (2016) Improvement of flame retardancy of poly(lactic acid) nonwoven fabric with a phosphorus containing flame retardant. J Ind Text 46:914–928CrossRefGoogle Scholar
  57. 57.
    Wei LL, Wang DY, Chen H-B, Chen L, Wang XL, Wang YZ (2011) Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(lactic acid). Polym Degrad Stab 96:1557–1561CrossRefGoogle Scholar
  58. 58.
    Wang DY, Song YP, Lin L, Wang XL, Wang YZ (2011) A novel phosphorus-containing poly(lactic acid) toward its flame retardation. Polymer 52:233–238CrossRefGoogle Scholar
  59. 59.
    Yuan XY, Wang DY, Chen L, Wang XL, Wang YZ (2011) Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polym Degrad Stab 96:1669–1675CrossRefGoogle Scholar
  60. 60.
    Zhan J, Song L, Nie S, Hua Y (2009) Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym Degrad Stab 94:291–296CrossRefGoogle Scholar
  61. 61.
    Zhao X, Gao S, Liu G (2016) A THEIC-based polyphosphate melamine intumescent flame retardant and its flame retardancy properties for polylactide. J Anal Appl Pyrol 122:24–34CrossRefGoogle Scholar
  62. 62.
    Liao F, Ju Y, Dai X, Cao Y, Li J, Wang X (2015) A novel efficient polymeric flame retardant for poly (lactic acid) (PLA): synthesis and its effects on flame retardancy and crystallization of PLA. Polym Degrad Stab 120:251–261CrossRefGoogle Scholar
  63. 63.
    Li Z, Wei P, Yang Y, Yan Y, Shi D (2014) Synthesis of a hyperbranched poly(phosphamide ester) oligomer and its high-effective flame retardancy and accelerated nucleation effect in polylactide composites. Polym Degrad Stab 110:104–112CrossRefGoogle Scholar
  64. 64.
    Tao K, Li J, Xu L, Zhao X, Xue L, Fan X, Yan Q (2011) A novel phosphazene cyclomatrix network polymer: design, synthesis and application in flame retardant polylactide. Polym Degrad Stab 96:1248–1254CrossRefGoogle Scholar
  65. 65.
    Tang G, Wang X, Xing W, Zhang P, Wang B, Hong N, Yang W, Hu Y, Song L (2012) Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind Eng Chem Res 51:12009–12016CrossRefGoogle Scholar
  66. 66.
    Tang G, Wang X, Zhang R, Wang B, Hong N, Hu Y, Song L, Gong X (2013) Effect of rare earth hypophosphite salts on the fire performance of biobased polylactide composites. Ind Eng Chem Res 52:7362–7372CrossRefGoogle Scholar
  67. 67.
    Gallo E, Schartel B, Acierno D, Russo P (2011) Flame retardant biocomposites: synergism between phosphinate and nanometric metal oxides. Eur Polym J 47:1390–1401CrossRefGoogle Scholar
  68. 68.
    Bocz K, Szolnoki B, Wladyka-Przybylak M, Bujnowicz K, Harakaly G, Bodzay B (2013) Flame retardancy of biocomposites based on thermoplastic starch. Polimery 58:385–394CrossRefGoogle Scholar
  69. 69.
    Negrell C, Frenehard O, Sonnier R, Dumazert L, Briffaud T, Flat JJ (2016) Self-extinguishing bio-based polyamides. Polym Degrad Stab 134:10–18CrossRefGoogle Scholar
  70. 70.
    Lligadas G, Ronda JC, Galia M, Cadiz V (2006) Synthesis and Properties of thermosetting polymers from a phosphorus containing fatty acids derivative. J Polym Sci Part A: Polym Chem 44:5630–5644CrossRefGoogle Scholar
  71. 71.
    Lligadas G, Ronda JC, Galia M, Cadiz V (2006) Synthesis and Properties of thermosetting polymers from a phosphorus containing fatty acids derivative. J Polym Sci Part A: Polym Chem 44:6717–6727CrossRefGoogle Scholar
  72. 72.
    Montero de Espinoza L, Ronda JC, Galia M, Cadiz V (2009) A straightforward strategies for the efficient synthesis of acrylate and phosphine oxide-containing vegetable oils and their crosslinked materials. J Polym Sci Part A Polym Chem 47:4051–4063CrossRefGoogle Scholar
  73. 73.
    Zhang L, Zhang M, Zhou Y, Hu L (2013) The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym Degrad Stab 98:2784–2794CrossRefGoogle Scholar
  74. 74.
    Liu XQ, Wang DY, Wang XL, Chen L, Wang YZ (2013) Synthesis of functionalized α-zirconium phosphate modified with intumescent flame retardant and its application in poly(lactic acid). Polym Degrad Stab 98:1731–1737CrossRefGoogle Scholar
  75. 75.
    Ding P, Kang B, Zhang J, Yang J, Song N, Tang S, Shi L (2015) Phosphorus-containing flame retardant modified layered double hydroxides and their applications on polylactide film with good transparency. J Coll Interf Sci 440:46–52CrossRefGoogle Scholar
  76. 76.
    Hu Y, Xu P, Gui H, Wang X, Ding Y (2015) Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Compos A 77:147–153CrossRefGoogle Scholar
  77. 77.
    Costes L, Laoutid F, Aguedo M, Richel A, Brohez S, Delvosalle C, Dubois P (2016) Phosphorus and nitrogen derivatization as efficient route for improvement of lignin flame retardant action in PLA. Eur Polym J 84:652–667CrossRefGoogle Scholar
  78. 78.
    Costes L, Laoutid F, Khelifa F, Rose G, Brohez S, Delvosalle C, Dubois P (2016) Cellulose/phosphorus combinations for sustainable fire retarded polylactide. Eur Polym J 74:218–228CrossRefGoogle Scholar
  79. 79.
    Costes L, Laoutid F, Dumazert L, Lopez-Cuesta JM, Brohez S, Delvosalle C, Dubois P (2015) Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid). Polym Degrad Stab 119:217–227CrossRefGoogle Scholar
  80. 80.
    González A, Dasari A, Herrero B, Plancher E, Santarén J, Esteban A, Lim SH (2012) Fire retardancy behavior of PLA based nanocomposites. Polym Degrad Stab 97:248–256CrossRefGoogle Scholar
  81. 81.
    Dhanushka Hapuarachchi T, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos A 41:954–963CrossRefGoogle Scholar
  82. 82.
    Ferry L, Gaudon P, Leroy E, Lopez-Cuesta JM (2005) Fire retardancy of polymers: new applications of mineral fillers. In: Le Bras M, Wilkie C, Bourbigot S, Duquesne S, Jama C (eds) Intumescence in ethylene-vinyl acetate copolymer filled with magnesium hydroxide and organoclays. The Royal Society of Chemistry, Oxford, pp 302–312 (chapter 22)Google Scholar
  83. 83.
    Cheng KC, Yu C-B, Guo W, Wang SF, Chuang TH, Lin Y-H (2012) Thermal properties and flammability of polylactide nanocomposites with aluminum trihydrate and organoclay. Carbohydr Polym 87:1119–1123CrossRefGoogle Scholar
  84. 84.
    Cheng KC, Chang SC, Lin YH, Wang CC (2015) Mechanical and flame retardant properties of polylactide composites with hyperbranched polymers. Compos Sci Technol 118:186–192CrossRefGoogle Scholar
  85. 85.
    Kiuchi Y, Iji M, Yanagisawa T, Shukichi T (2014) Flame-retarding polylactic-acid composite formed by dual use of aluminum hydroxide and phenol resin. Polym Degrad Stab 109:336–342CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Rodolphe Sonnier
    • 1
    Email author
  • Aurélie Taguet
    • 1
  • Laurent Ferry
    • 1
  • José-Marie Lopez-Cuesta
    • 1
  1. 1.Centre des Matériaux des Mines d’AlèsEcole des Mines d’AlèsAlèsFrance

Personalised recommendations