Online Comparison System with Certain and Uncertain Criteria Based on Multi-criteria Decision Analysis Method

  • Paweł Ziemba
  • Jarosław Jankowski
  • Jarosław Wątróbski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)

Abstract

The Internet makes it possible to find and analyse information about goods and services which can be purchased online. An abundance of e-commerce services and available products makes customers disorientated. Shoppers usually devote a great deal of time to browse offers and select their optimal products and they often are in need of advisers who could share their expert knowledge on products customers know very little about. That is why, on the Internet the comparison services, such as Google shopping, Shopzilla, PriceGrabber are being developed. The applications support customers in decision-making by letting them compare many similar products and offers of online shops. This article is focused on the issue related to the support of product evaluation in comparison services. Presently applied comparison algorithms include only the product price but do not concentrate on other criteria of evaluation. In relation to the above-mentioned problem, it is suggested that the number of evaluation criteria should be increased and an adequate multi-criteria decision analysis (MCDA) method ought to be applied. The comparison system proposed in the paper is based on MCDA method and is able to use certain and uncertain criteria. As a result, it increases the functionality of this type of Internet service.

Keywords

Comparison services Multi-criteria decision analysis methods Fuzzy TOPSIS Certain and uncertain criteria Intelligent web systems 

References

  1. 1.
    Jankowski, J., Wątróbski, J., Ziemba, P.: Modeling the impact of visual components on verbal communication in online advertising. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS, vol. 9330, pp. 44–53. Springer, Cham (2015). doi: 10.1007/978-3-319-24306-1_5 CrossRefGoogle Scholar
  2. 2.
    Kawaf, F., Tagg, S.: The construction of online shopping experience: a repertory grid approach. Comput. Hum. Behav. 72, 222–232 (2017)CrossRefGoogle Scholar
  3. 3.
    Global B2C E-commerce Report 2016, Ecommerce Foundation. https://www.ecommercewiki.org/wikis/www.ecommercewiki.org/images/5/56/Global_B2C_Ecommerce_Report_2016.pdf. Accessed 30 Apr 2017
  4. 4.
    European B2C E-commerce Report 2016, Ecommerce Europe. https://www.ecommerce-europe.eu/app/uploads/2016/07/European-B2C-E-commerce-Report-2016-Light-Version-FINAL.pdf. Accessed 30 Apr 2017
  5. 5.
    Yelken, Y.: yStats.com: Popularity of Online Comparison Shopping Services Varies Worldwide, 23 Mar 2016. https://www.linkedin.com/pulse/ystatscom-popularity-online-comparison-shopping-services-yelken. Accessed 30 Apr 2017
  6. 6.
    Gemius & Izba Gospodarki Elektronicznej. https://ecommercepolska.pl/files/9414/6718/9485/E-commerce_w_polsce_2016.pdf. Accessed 30 Apr 2017
  7. 7.
    Laffey, D., Gandy, A.: Comparison websites in UK retail financial services. J. Financ. Serv. Mark. 14(2), 173–186 (2009)CrossRefGoogle Scholar
  8. 8.
    Marano, P.: The EU regulation on comparison websites of insurance products. In: Marano, P., Rokas, I., Kochenburger, P. (eds.) The “Dematerialized” Insurance. Distance Selling and Cyber Risks from an International Perspective, pp. 59–84. Springer, Cham (2016). doi: 10.1007/978-3-319-28410-1_3 Google Scholar
  9. 9.
    Holland, C.P., Jacobs, J.A., Klein, S.: The role and impact of comparison websites on the consumer search process in the US and German airline markets. Inf. Technol. Tour. 16(1), 127–148 (2016)CrossRefGoogle Scholar
  10. 10.
    Paraskeyas, A., Kontoyiannis, K.: Travel comparison websites: an old friend with new clothes. In: Frew, A.J. (ed.) Information and Communication Technologies in Tourism 2005, pp. 486–496. Springer, Vienna (2005). doi: 10.1007/3-211-27283-6_44 CrossRefGoogle Scholar
  11. 11.
    Chmielarz, W., Zborowski, M.: The application of a conversion method in a confrontational pattern-based design method used for the evaluation of it systems. Ann. Comput. Sci. Inf. Syst. 2, 1227–1234 (2014)CrossRefGoogle Scholar
  12. 12.
    Laffey, D., Gandy, A.: Applying Stabell and Fjeldstad’s value configurations to E-commerce: a cross-case analysis of UK comparison websites. J. Strateg. Inf. Syst. 18(4), 192–204 (2009)CrossRefGoogle Scholar
  13. 13.
    Laffey, D.: Comparison websites: evidence from service sector. Serv. Ind. J. 30(12), 1939–1954 (2010)CrossRefGoogle Scholar
  14. 14.
    Ronayne, D.: Price Comparison Websites. Warwick Economics Research Paper Series, no. 1056 (2015)Google Scholar
  15. 15.
    Guitouni, A., Wheaton, K., Wood, D.: An essay to characterise models the military decision-making processes. In: The 11th International Command and Control Research and Technology Symposium, Cambridge (2006)Google Scholar
  16. 16.
    Roy, B.: Multicriteria Methodology for Decision Aiding. Springer, Dordrecht (1996)CrossRefMATHGoogle Scholar
  17. 17.
    Guitouni, A., Martel, J.M.: Tentative guidelines to help choosing an appropriate MCDA method. Eur. J. Oper. Res. 109(2), 501–521 (1998)CrossRefMATHGoogle Scholar
  18. 18.
    Wątróbski, J., Jankowski, J., Ziemba, P.: Multistage performance modelling in digital marketing management. Econ. Sociol. 9(2), 101–125 (2016)Google Scholar
  19. 19.
    Jacquet-Lagreze, E., Siskos, Y.: Preference disaggregation: 20 years of MCDA experience. Eur. J. Oper. Res. 130(2), 233–245 (2001)CrossRefMATHGoogle Scholar
  20. 20.
    Roy, B.: Paradigms and challenges. In: Figueira, J., Greco, S., Ehrogott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science, vol. 78, pp. 3–24. Springer, New York (2005). doi: 10.1007/0-387-23081-5_1 CrossRefGoogle Scholar
  21. 21.
    Ozturk, M., Tsoukias, A., Vincke, P.: Preference modelling. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science, vol. 78, pp. 27–59. Springer, New York (2005). doi: 10.1007/0-387-23081-5_2 CrossRefGoogle Scholar
  22. 22.
    Chen, C.T., Lin, C.T., Huang, S.F.: A fuzzy approach for supplier evaluation and selection in supply chain management. Int. J. Prod. Econ. 102(2), 289–301 (2006)CrossRefGoogle Scholar
  23. 23.
    Kutlu, A.C., Ekmekcioglu, M.: Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Syst. Appl. 39(1), 61–67 (2012)CrossRefGoogle Scholar
  24. 24.
    Chen, C.T.: Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 114(1), 1–9 (2000)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Ziemba, P., Jankowski, J., Wątróbski, J., Piwowarski, M.: Web projects evaluation using the method of significant website assessment criteria detection. In: Nguyen, N.T., Kowalczyk, R. (eds.) Transactions on Computational Collective Intelligence XXII. LNCS, vol. 9655, pp. 167–188. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49619-0_9 CrossRefGoogle Scholar
  26. 26.
    Ziemba, P., Wątróbski, J., Jankowski, J., Wolski, W.: Construction and restructuring of the knowledge repository of website evaluation methods. In: Ziemba, E. (ed.) Information Technology for Management. LNBIP, vol. 243, pp. 29–52. Springer, Cham (2016). doi: 10.1007/978-3-319-30528-8_3 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Paweł Ziemba
    • 1
  • Jarosław Jankowski
    • 2
  • Jarosław Wątróbski
    • 2
  1. 1.The Jacob of Paradies UniversityGorzów WielkopolskiPoland
  2. 2.West Pomeranian University of TechnologySzczecinPoland

Personalised recommendations