Advertisement

Come Together!”: Interactions of Language Networks and Multilingual Communities on Twitter

  • Nabeel Albishry
  • Tom Crick
  • Theo Tryfonas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10449)

Abstract

Emerging tools and methodologies are providing insight into the factors that promote the propagation of information in online social networks following significant activities, such as high-profile international social or societal events. This paper presents an extensible approach for analysing how different language communities engage and interact on the social networking platform Twitter via an analysis of the Eurovision Song Contest held in Stockholm, Sweden, in May 2016. By utilising language information from user profiles (N = 1,226,959) and status updates (N = 7,926,746) to identify and categorise communities, our approach is able to categorise these interactions, as well as construct network graphs to provide further insight on these multilingual communities. The results show that multilingualism is positively correlated with activity whilst negatively correlated with posting in the user’s own language.

Keywords

Language networks Multilingual communities Community discovery Network graphs Social networks 

References

  1. 1.
    Hong, L., Convertino, G., Chi, E.H.: Language matters in Twitter: a large scale study. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (2011)Google Scholar
  2. 2.
    Takhteyev, Y., Gruzd, A., Wellman, B.: Geography of Twitter networks. Soc. Netw. 34(1), 73–81 (2012)CrossRefGoogle Scholar
  3. 3.
    Magdy, A., Ghanem, T.M., Musleh, M., Mokbel, M.F.: Understanding language diversity in local Twitter communities. In: Proceedings of the 27th ACM Conference on Hypertext and Social Media, pp. 331–332 (2016)Google Scholar
  4. 4.
    Kulshrestha, J., Kooti, F., Nikravesh, A., Gummadi, K.P.: Geographic dissection of the Twitter network. In: Proceedings of the 6th International AAAI Conference on Weblogs and Social Media (2012)Google Scholar
  5. 5.
    Cunha, E., Magno, G., Comarela, G., Almeida, V., Gonçalves, M., Benevenuto, F.: Analyzing the dynamic evolution of hashtags on Twitter: a language-based approach. In: Proceedings of the Workshop on Languages in Social Media, pp. 58–65 (2011)Google Scholar
  6. 6.
    Bruns, A., Highfield, T., Burgess, J.: The arab spring and social media audiences: English and Arabic Twitter users and their networks. Am. Behav. Sci. 57(7), 871–898 (2013)CrossRefGoogle Scholar
  7. 7.
    Zappavigna, M., Martin, J.R.: Discourse of Twitter and Social Media: How We Use Language to Create Affiliation on the Web. Continnuum, New York (2012)Google Scholar
  8. 8.
    Zhuravleva, A., de Bot, K., Haug Hilton, N.: Using social media to measure language use. J. Multiling. Multicult. Dev. 37(6), 601–614 (2015)CrossRefGoogle Scholar
  9. 9.
    Gruffydd Jones, E., Uribe-Jongbloed, E. (eds.): Social Media and Minority Languages: Convergence and the Creative Industries. Multilingual Matters Ltd., Bristol (2013)Google Scholar
  10. 10.
    Gisnburgh, V., Weber, S.: How Many Languages Do We Need? The Economics of Linguistic Diversity. Princeton University Press, Princeton (2011)Google Scholar
  11. 11.
    Willis, A., Fisher, A., Lvov, I.: Mapping networks of influence: tracking Twitter conversations through time and space. Particip. J. Audience Reception Stud. 12(1), 494–530 (2015)Google Scholar
  12. 12.
    Oatley, G., Crick, T.: Measuring UK crime gangs: a social network problem. Soc. Netw. Anal. Mining 5(1), 1–16 (2015)CrossRefGoogle Scholar
  13. 13.
    Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw. 21(4), 375–395 (2000)CrossRefGoogle Scholar
  14. 14.
    Rombach, M., Porter, M.A., Fowler, J.H., Mucha, P.J.: Core-Periphery Structure in Networks. SIAM J. Appl. Math. 74(1), 167–190 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, W., Pellegrini, M., Wang, X.: detecting communities based on network topology. Sci. Rep. 4(5739) (2014). doi: 10.1038/srep05739
  16. 16.
    Cha, M., Benevenuto, F., Haddadi, H., Gummadi, K.: The world of connections and information flow in Twitter. IEEE Trans. Syst. Man Cybern. 42(4), 991–998 (2012)CrossRefGoogle Scholar
  17. 17.
    Borge-Holthoefer, J., Rivero, A., Moreno, Y.: Locating privileged spreaders on an online social network. Phys. Rev. E 85(066123) (2012). doi: 10.1103/PhysRevE.85.066123
  18. 18.
    Zhang, J.X., Chen, D.B., Dong, Q., Zhao, Z.D.: Identifying a set of influential spreaders in complex networks. Sci. Rep. 6(27823) (2016). doi: 10.1038/srep27823
  19. 19.
    Kang, R., Brown, S., Kiesler, S.: Why do people seek anonymity on the internet?: informing policy and design. In: Proceedings SIGCHI Conference on Human Factors in Computing Systems, pp. 2657–2666 (2013)Google Scholar
  20. 20.
    Morstatter, F., Pfeffer, J., Liu, H., Carley, K.M.: Is the sample good enough? Comparing data from Twitter’s streaming API with Twitter’s firehose. In: Proceedings of 7th International AAAI Conference on Web and Social Media, pp. 400–408 (2013)Google Scholar
  21. 21.
    Tan, L., Ponnam, S., Gillham, P., Edwards, B., Johnson, E.: Analyzing the impact of social media on social movements: a computational study on Twitter and the Occupy Wall Street movement. In: Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (2013)Google Scholar
  22. 22.
    Kumar, S., Morstatter, F., Liu, H.: Twitter Data Analytics. Springer, Heidelberg (2014). doi: 10.1007/978-1-4614-9372-3CrossRefGoogle Scholar
  23. 23.
    Liang, Y., Caverlee, J., Cheng, Z., Kamath, K.Y.: How big is the crowd?: event and location based population modeling in social media. In: Proceedings of 24th ACM Conference on Hypertext and Social Media, pp. 99–108 (2013)Google Scholar
  24. 24.
    Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating Twitter users. In: Proceedings of 19th ACM Conference on Information and Knowledge Management, pp. 759–768 (2010)Google Scholar
  25. 25.
    Blamey, B., Crick, T., Oatley, G.: ‘The first day of summer’: parsing temporal expressions with distributed semantics. In: Bramer, M., Petridis, M. (eds.) Research and Development in Intelligent Systems XXX, pp. 389–402. Springer, Cham (2013). doi: 10.1007/978-3-319-02621-3_29CrossRefGoogle Scholar
  26. 26.
    Caverlee, J., Cheng, Z., Sui, D.Z., Yeswanth Kamath, K.: Towards geo-social intelligence: mining, analyzing, and leveraging geospatial footprints in social media. IEEE Data Eng. Bull. 36(3), 33–41 (2013)Google Scholar
  27. 27.
    The Telegraph: Eurovision 2016: furious Russia demands boycott of Ukraine over Jamala’s ‘anti-Kremlin’ song. http://www.telegraph.co.uk/news/2016/05/15/eurovision-2016-furious-russia-demands-boycott-of-ukraine-over-j. Accessed 01 Apr 2017
  28. 28.
    Ginsburgh, V., Noury, A.G.: The eurovision song contest. Is voting political or cultural? Eur. J. Polit. Econ. 24(1), 41–52 (2008)CrossRefGoogle Scholar
  29. 29.
    Charron, N.: Impartiality, friendship-networks and voting behavior: evidence from voting patterns in the Eurovision Song Contest. Soc. Netw. 35(3), 484–497 (2013)CrossRefGoogle Scholar
  30. 30.
    Blangiardo, M., Baio, G.: Evidence of bias in the Eurovision song contest: modelling the votes using Bayesian hierarchical models. J. Appl. Stat. 41(10), 2312–2322 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Budzinski, O., Pannicke, J.: Culturally biased voting in the Eurovision Song Contest: do national contests differ? J. Cult. Econ. 1–36 (2016). https://link.springer.com/article/10.1007/s10824-016-9277-6
  32. 32.
    Kirk, A., Kempster, J., Franco, S.: Eurovision 2016: how does country bias affect the result? http://www.telegraph.co.uk/music/news/eurovision-2016-how-country-bias-affects-the-result. Accessed 31 Apr 2017
  33. 33.
    Oatley, G., Crick, T.: Changing faces: identifying complex behavioural profiles. In: Tryfonas, T., Askoxylakis, I. (eds.) HAS 2014. LNCS, vol. 8533, pp. 282–293. Springer, Cham (2014). doi: 10.1007/978-3-319-07620-1_25CrossRefGoogle Scholar
  34. 34.
    Sluban, B., Smailović, J., Battiston, S.: Mozetic̆ I.: Sentiment leaning of influential communities in social networks. Comput. Soc. Netw. 2(9), 1–21 (2015)Google Scholar
  35. 35.
    Mostafa, M., Crick, T., Calderon, A.C., Oatley, G.: Incorporating emotion and personality-based analysis in user-centered modelling. In: Bramer, M., Petridis, M. (eds.) Research and Development in Intelligent Systems XXXIII. LNCS, pp. 383–389. Springer, Cham (2016). doi: 10.1007/978-3-319-47175-4_29CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of BristolBristolUK
  2. 2.Department of ComputingCardiff Metropolitan UniversityCardiffUK

Personalised recommendations