Advertisement

Solving Dynamic Traveling Salesman Problem with Ant Colony Communities

  • Andrzej Siemiński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10448)

Abstract

The paper studies Ant Colony Communities (ACC). They are used to solve the Dynamic Travelling Salesman Problem (DTSP). An ACC consists of a server and a number of client ACO colonies. The server coordinates the work of individual clients and sends them cargos with data to process and then receives and integrates partial results. Each client implements the basic version of the ACO algorithm. They communicate via sockets and therefore can run on several separate computers. In the DTSP distances between the nodes change constantly. The process is controlled by a graph generator. In order to study the performance of the ACC, we conducted a substantial number of experiments. Their results indicate that to handle highly dynamic distance matrixes we need a large number of clients.

Keywords

Dynamic Travelling Salesmen Problem ACO parallel implementations Scalability 

References

  1. 1.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2011)zbMATHGoogle Scholar
  3. 3.
    Antosiewicz, M., Koloch, G., Kamińskim, B.: Choice of best possible metaheuristic algorithm for the Travelling Salesman Problem with limited computational time: quality, uncertainty and speed. J. Theor. Appl. Comput. Sci. 7(1), 46–55 (2013)Google Scholar
  4. 4.
    Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italie (1992)Google Scholar
  5. 5.
    Psarafits, H.N.: Dynamic vehicle routing: status and prospects. Nat. Tech. Annal. Oper. Res. 61, 143–164 (1995)CrossRefGoogle Scholar
  6. 6.
    Guntsch, M., Middendorf, M.: Pheromone modifcation strategies for ant algorithms applied to dynamic TSP. In: EvoWorkshops 2001: Applications of Evolutionary Computation, pp. 213–222 (2001)Google Scholar
  7. 7.
    Guntsch, M., Middendorf, M.: A population based approach for ACO. In: Proceeding of 2nd European Workshop on Evolutionary Computation in Combinatorial Optimization (EvoCOP-2002), vol. 2279, pp. 72–81 (2002)Google Scholar
  8. 8.
    Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes in dynamic environments. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 371–380. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15871-1_38CrossRefGoogle Scholar
  9. 9.
    Dorigo, M., Stuetzle, T.: Ant Colony Optimization: overview and recent advances. IRIDIA - Technical Report Series, Technical Report No. TR/IRIDIA/2009-013, May 2009Google Scholar
  10. 10.
    Siemiński, A.: TSP/ACO Partameter Optimization; Information Systems Architecture and Technology; System Analysis Approach to the Design, Control and Decision Support; pp. 151–161. Oficyna Wydawnicza Politechniki Wrocławskiej Wrocław (2011)Google Scholar
  11. 11.
    Gaertner, D., Clark, K.L.: On optimal parameters for Ant Colony Optimization algorithms. In: IC-AI, pp. 83–89 (2005)Google Scholar
  12. 12.
    Pedemonte, M., Nesmachnow, S., Cancela, H.: A survey on parallel Ant Colony Optimization. Appl. Soft Comput. 11, 5181–5197 (2011)CrossRefGoogle Scholar
  13. 13.
    Siemiński, A., Kopel, M.: Comparing efficiency of ACO parallel implementations. J. Intell. Fuzzy Syst. 32(2), 1377–1388 (2017)CrossRefGoogle Scholar
  14. 14.
    Chirico, U.: A Java framework for ant colony systems. In: Ants2004: Forth International Workshop on Ant Colony Optimization and Swarm Intelligence, Brussels (2004)Google Scholar
  15. 15.
    Siemiński, A.: Measuring efficiency of Ant Colony Communities. In: Zgrzywa, A., Choroś, K., Siemiński, Aj (eds.) Multimedia and Network Information Systems. AISC, vol. 506, pp. 203–213. Springer, Cham (2017). doi: 10.1007/978-3-319-43982-2_18CrossRefGoogle Scholar
  16. 16.
    Hong, T.-P., Peng, Y.-C., Lin, W.-Y., Wang, S.-L.: Empirical comparison of level-wise hierarchical multi-population genetic algorithm. J. Inf. Telecommun. 1(1), 66–78 (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Computer Science and ManagementWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations