Advertisement

Isoperimetric Inequalities for Some Integral Operators Arising in Potential Theory

  • Michael Ruzhansky
  • Durvudkhan SuraganEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 216)

Abstract

In this paper we review our previous isoperimetric results for the logarithmic potential and Newton potential operators. The main reason why the results are useful, beyond the intrinsic interest of geometric extremum problems , is that they produce a priori bounds for spectral invariants of operators on arbitrary domains. We demonstrate these in explicit examples.

Keywords

Logarithmic potential operator Newton potential operator Geometric extremum problem Schatten p-norm Rayleigh-Faber-Krahn inequality Polya inequality Luttinger type inequality 

Notes

Acknowledgements

This publication is supported by the target program 0085/PTSF-14 from the Ministry of Science and Education of the Republic of Kazakhstan.

References

  1. 1.
    Kac, M.: On some connections between probability theory and differential and integral equations. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 189–215. University of California Press, Berkeley and Los Angeles (1951)Google Scholar
  2. 2.
    Kac, M.: On some probabilistic aspects of classical analysis. Am. Math. Monthly 77, 586–597 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kal’menov, TSH, Suragan, D.: To spectral problems for the volume potential. Doklady Math. 80, 646–649 (2009)Google Scholar
  4. 4.
    Birman, M.Š., Solomjak, M.Z.: Estimates for the singular numbers of integral operators. Uspehi Mat. Nauk. 32,1(193), 17–84 (1977)Google Scholar
  5. 5.
    Saito, N.: Data analysis and representation on a general domain using eigenfunctions of Laplacian. Appl. Comput. Harmon. Anal. 25(1), 68–97 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ruzhansky, M., Suragan, D.: On Kac’s principle of not feeling the boundary for the Kohn Laplacian on the Heisenberg group. Proc. AMS. 144(2), 709–721 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ruzhansky, M., Suragan, D.: Layer potentials, Kac’s problem, and refined Hardy inequality on homogeneous Carnot groups. Adv. Math. 308, 483–528 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kal’menov, TSH, Suragan, D.: Boundary conditions for the volume potential for the polyharmonic equation. Differential Equations. 48, 604–608 (2012)Google Scholar
  9. 9.
    Kalmenov, TSH, Suragan, D.: A boundary condition and spectral problems for the Newton potentials. Op. Theory Adv. Appl. 216, 187–210 (2011)Google Scholar
  10. 10.
    Anderson, J.M., Khavinson, D., Lomonosov, V.: Spectral properties of some integral operators arising in potential theory. Quart. J. Math. Oxford Ser. (2) 43(172), 387–407 (1992)Google Scholar
  11. 11.
    Arazy, J., Khavinson, D.: Spectral estimates of Cauchy’s transform in \(L^2(\Omega )\). Integral Equ. Op. Theory 15(6), 901–919 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kac, M.: Integration in function spaces and some of its applications. Lezioni Fermiane. [Fermi Lectures]. Accademia Nazionale dei Lincei, Pisa (1980)Google Scholar
  13. 13.
    Troutman, J.L.: The logarithmic potential operator. Illinois J. Math. 11, 365–374 (1967)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Troutman, J.L.: The logarithmic eigenvalues of plane sets. Illinois J. Math. 13, 95–107 (1969)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Zoalroshd, S.: A note on isoperimetric inequalities for logarithmic potentials. J. Math. Anal. Appl. 437(2), 1152–1158 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Benguria, R.D., Linde, H., Loewe, B.: Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrödinger operator. Bull. Math. Sci. 2(1), 1–56 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pólya, G.,Szegö, G.: Isoperimetric inequalities in mathematical physics. Ann. Math. Stud. 27. Princeton University Press, Princeton, N.J. (1951)Google Scholar
  18. 18.
    Bandle, C.: Isoperimetric inequalities and applications. In: Pitman (Advanced Publishing Program), 7 of Monographs and Studies in Mathematics. Boston, Mass, London (1980)Google Scholar
  19. 19.
    Henrot, A.: Extremum problems for eigenvalues of elliptic operators. In: Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006)Google Scholar
  20. 20.
    Rozenblum, G., Ruzhansky, M., Suragan, D.: Isoperimetric inequalities for Schatten norms of Riesz potentials. J. Funct. Anal. 271, 224–239 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ruzhansky, M., Suragan, D.: Schatten’s norm for convolution type integral operator. Russ. Math. Surv. 71, 157–158 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ruzhansky, M., Suragan, D.: On first and second eigenvalues of Riesz transforms in spherical and hyperbolic geometries. Bull. Math. Sci. 6, 325–334 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kassymov, A., Suragan, D.: Some spectral geometry inequalities for generalized heat potential operators. Complex Anal. Op. Theory (2016).  https://doi.org/10.1007/s11785-016-0605-9
  24. 24.
    Ruzhansky, M., Suragan, D.: Isoperimetric inequalities for the logarithmic potential operator. J. Math. Anal. Appl. 434, 1676–1689 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gohberg, I.C., Kreĭn, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, vol. 18. AMS, Providence, R.I. (1969)Google Scholar
  26. 26.
    Landkof, N.S.: Foundations of modern potential theory. Translated from the Russian by Doohovskoy A.P., Die Grundlehren der mathematischen Wissenschaften, Band, p. 180. Springer, New York-Heidelberg (1972)Google Scholar
  27. 27.
    Delgado, J., Ruzhansky, M.: Schatten classes on compact manifolds: kernel conditions. J. Funct. Anal. 267(3), 772–798 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pólya, G.: On the characteristic frequencies of a symmetric membrane. Math. Z. 63, 331–337 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kac, M.: An application of probability theory to the study of Laplaces equation. Ann. Soc. Polon. Math. 25, 122–130 (1953)MathSciNetGoogle Scholar
  30. 30.
    Luttinger, J.M.: Generalized isoperimetric inequalities. Proc. Nat. Acad. Sci. U.S.A. 70, 1005–1006 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Harrell, E.M., Hermib, L.: Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues. J. Funct. Anal. 254, 3173–3191 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Dostanic, M.R.: Regularized trace of the inverse of the Dirichlet Laplacian. Comm. Pure Appl. Math. 64(8), 1148–1164 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Banuelos, R., Latala, R., Mendez-Hernandez, P.J.: A Brascamp-Lieb-Luttinger-type inequality and applications to symmetric stable processes. Proc. Am. Math. Soc. 129(10), 2997–3008 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Dostanic, M.R.: The asymptotic behavior of the singular values of the convolution operators with kernels whose Fourier transform are rational. J. Math. Anal. Appl. 295(2), 496–500 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kac, M.: Distribution of eigenvalues of certain integral operators. Mich. Math. J. 3, 141–148 (1956)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Kac, M.: Aspects probabilistes de la Theorie du Potentiel. Les Presses de la Universite de Montreal (1970)Google Scholar
  37. 37.
    Lieb, E.H., Loss, M.: Analysis. In: Graduate Studies in Mathematics, vol. 14, 2nd edn. AMS, Providence, RI (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Imperial College LondonLondonUnited Kingdom
  2. 2.Institute of Mathematics and Mathematical ModelingAlmatyKazakhstan

Personalised recommendations