Skip to main content

Natural Products as Antiparasitic Agents

  • Chapter
  • First Online:
Natural Antimicrobial Agents

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 19))

Abstract

Parasitic diseases remain a major burden on global human and veterinary health. They affect more than two billion people worldwide causing considerable morbidity and mortality and are a major constraint on livestock production, especially in the world’s poorest communities. The immense suffering caused by these illnesses and the consequential loss of productivity is a major drain on the limited resources of the populations in which they occur. Most modern and effective drugs for parasitic diseases present no financial viability for the pharmaceutical industry since affected people have limited financial resources. Although financial return on investment is insufficient for drug discovery process and development, there is a constant desperate need for new chemical entities presenting new mechanisms of action. Higher plants, marine organisms, and microorganisms provide immense opportunities for the discovery of new drugs and drug leads. The screening of these natural sources thus remains one of the most attractive routes to discovering and developing new drugs. This article reviews the importance of natural products as a source of antiparasitic drugs and discusses some of the research challenges.

The original version of this chapter was revised: Chapter title has been changed. The erratum to this chapter is available at https://doi.org/10.1007/978-3-319-67045-4_13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas R, Colwell D, Gilleard J (2012) Botanicals: an alternative approach for the control of avian coccidiosis. Worlds Poult Sci J 68(2):203–215

    Google Scholar 

  • Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 33(8):1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubertin C, Filoche G (2011) The Nagoya protocol on the use of genetic resources: one embodient of an endless discussion. Sustenabilidade em Debate 2(1):51–64

    Google Scholar 

  • Bessoff K, Spangenberg T, Foderaro JE, Jumani RS, Ward GE, Hustona CD (2014) Identification of Cryptosporidium parvum active chemical series by Repurposing the open access malaria box. Antimicrob Agents Chemother 58(5):2731–2739

    Google Scholar 

  • Blake DP, Tomley FM (2014) Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol 30(1):12–19

    Article  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33(3):382–431

    Google Scholar 

  • Braga ÉM, Silveira P, Belo NO, Valkiũnas G (2011) Recent advances in the study of avian malaria: an overview with an emphasis on the distribution of Plasmodium spp in Brazil. Mem Inst Oswaldo Cruz 106:3–11

    Google Scholar 

  • Bucar F, Wube A, Schmid M (2013) Natural product isolation - how to get from biological material to pure compounds. Nat Prod Rep 30:525–545

    Article  CAS  PubMed  Google Scholar 

  • Butler MS, Robertson AAB, Cooper MA (2014) Natural product and natural product derived drugs in clinical trials. Nat Prod Rep 31:1612–1661

    Article  CAS  PubMed  Google Scholar 

  • Cardona GA, Carmena D (2013) A review of the global prevalence, molecular epidemiology and economics of cystic echinococcosis in production animals. Vet Parasitol 192(1–3):10–32

    Article  PubMed  Google Scholar 

  • CDB (2016) https://www.cbd.int/abs/nagoya-protocol/signatories/default.shtml

  • CDC (2016) http://www.cdc.gov/dpdx/

  • Chapman HD (2014) Milestones in avian coccidiosis research: a review. Poult Sci 93:501–511

    Article  CAS  PubMed  Google Scholar 

  • Charlier J, van der Voort M, Kenyon F, Skuce P, Vercruysse J (2014) Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol 30(7):361–367

    Article  PubMed  Google Scholar 

  • Checkley W, White AC Jr, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, Huston CD, Kotloff KL, Kang G, Mead JR, Miller M, Petri WA Jr, Priest JW, Roos DS, Striepen B, Thompson RC, Ward HD, Van Voorhis WA, Xiao L, Zhu G, Houpt ER (2015) A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis 15(1):85–94

    Google Scholar 

  • Colley DG (2000) Parasitic diseases: opportunities and challenges in the 21st century. Mem Inst Oswaldo Cruz 95:79–87

    Google Scholar 

  • Cordell GA, Colvard MD (2012) Natural products and traditional medicine: turning on a paradigm. J Nat Prod 75(3):514–525

    Google Scholar 

  • Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Crosia PJ (2011) Worldwide market of veterinary drugs: trend analysis for the last ten years. Bull Acad Vet France 164(1):21–25

    Article  Google Scholar 

  • David B, Wolfender JL, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14(2):299–315

    Article  CAS  Google Scholar 

  • DeFelice SL (2002) FIM rationale and proposed guidelines for the nutraceutical research & education Act - NREA, November 10, 2002. Foundation for Innovation in Medicine. http://www.fimdefelice.org/archives/arc.researchact.html

  • De Souza W, Rodrigues JCF (2009) Sterol biosynthesis pathway as target for anti-trypanosomatid drugs. Interdiscip Perspect Infect Dis. https://doi.org/10.1155/2009/642502

    PubMed  PubMed Central  Google Scholar 

  • DNDi (2016) http://www.dndi.org/diseases-projects/portfolio/

  • EMEA (1998) Quality of herbal medicinal products. Guidelines, European Agency for the Evaluation of Medicinal Products (EMEA), London

    Google Scholar 

  • Epe C, Kaminsky R (2013) New advancement in anthelmintic drugs in veterinary medicine. Trends Parasitol 29(3):129–134

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2016) http://faostat3.fao.org/home/E

  • Fernańdez-Álvaro E, Hong WD, Nixon GL, O’Neill PM, Calderoń F (2016) Antimalarial chemotherapy: natural product inspired development of preclinical and clinical candidates with diverse mechanisms of action. J Med Chem 59:5587–5603

    Article  PubMed  Google Scholar 

  • Geary TG, Woo K, McCarthy JS, Mackenzie CD, Horton J, Prichard RK, de Silva NR, Olliaro PL, Lazdins-Helds JK, Engels DA, Bundy DA (2010) Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol 40(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Geerts S, Holmes PH, Diall O, Eisler MC (2001) African bovine trypanosomiasis: the problem of drug resistance. Trends Parasitol 17(1):25–28

    Google Scholar 

  • Geurden T, Chartier C, Fanke J, Frangipane di Regalbone A, Travaersa D, von Samason-Himmelstjerna G, Demeler J, Vanimisetti HB, Bartam DJ, Denwood MJ (2015) Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe. Int J Parasitol Drugs Drug Resist 5(3):163–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Gohil S, Herrmann S, Günther S, Cooke BM (2013) Bovine babesiosis in the 21st century: advances in biology and functional genomics. Int J Parasitol 43(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • Goldman Sachs (2015) Mectizan donation program, Annual highlights. http://www.goldmansachs.com/media-relations/press-releases/current/pdfs/2013-q4-results.pdf

  • Goo YK, Terkawi MA, Jia H, Aboge GO, Ooka H, Nelson B, Kim S, Sunaga F, Namikawa K, Igarashi I, Nishikawa Y, Xuan X (2010) Artesunate, a potential drug for treatment of Babesia infection. Parasitol Int 59(3):481–486

    Article  CAS  PubMed  Google Scholar 

  • Hertweck C (2015) Natural products as source of therapeutics against parasitic diseases. Angew Chem Int Ed Engl 54(49):14622–14624

    Article  CAS  PubMed  Google Scholar 

  • Horn D, Duraisingh MT (2014) Antiparasitic chemotherapy: from genomes to mechanisms. Annu Rev Pharmacol Toxicol 54:71–94

    Google Scholar 

  • Hoste H, Torres-Acosta JFJ, Sandoval-Castro CA, Mueller-Harvey I, Sotiraki S, Louvandini H, Thamsborg SM, Terrill TH (2015) Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet Parasitol 15;212(1–2):5–17

    Google Scholar 

  • Hotez PJ, Alvarado M, Basanez MG, Bolliger I, Bourne R, Boussinesq M, Brooker SJ, Brown AS, Buckle G, Budke CM, Carabin H, Coffeng LE, Fèvre EM, Fürst T, Halasa YA, Jasrasaria R, Johns NE, Keiser J, King CH, Lozano R, Murdoch ME, O’Hanlon S, Pion SD, Pullan RL, Ramaiah KD, Roberts T, Shepard DS, Smith JL, Stolk WA, Undurraga EA, Utzinger J, Wang M, Murray CJ, Naghavi M (2014) The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis 8(7):e2865

    Google Scholar 

  • Hussain H, Al-Harrasi A, Al-Rawahi A, Green IR, Gibbons S (2014) Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem Rev 114(20):10369–10428

    Google Scholar 

  • Iguchi A, Matsuu A, Matsuyama K, Hikasa Y (2015) The efficacy of artemisinin, artemether, and lumefantrine against Babesia gibsoni in vitro. Parasitol Int 64(2):190–193

    Article  CAS  PubMed  Google Scholar 

  • Jones WP, Kinghorn AD (2012) Extraction of plant secondary metabolites. Methods Mol Biol 864:341–366

    Article  CAS  PubMed  Google Scholar 

  • Kalra EK (2003) Nutraceutical: definition and introduction. AAPS pharmSci 5(3):E25

    Google Scholar 

  • Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90:S55–S62

    Article  PubMed  Google Scholar 

  • Kessl JJ, Meshnick SR, Trumpower BL (2007) Modeling the molecular basis of atovaquone resistance in parasites and pathogenic fungi. Trends Parasitol 23(10):494–501

    Article  CAS  PubMed  Google Scholar 

  • Khan MK, Sajid MS, Riaz H, Ahmad NE, He L, Shahzad M, Hussain A, Khan MN, Iqbal Z, Zhao J (2013) The global burden of fasciolosis in domestic animals with an outlook on the contribution of new approaches for diagnosis and control. Parasitol Res 112(7):2421–2430

    Google Scholar 

  • Kim DK, Lillehoj HS, Lee SH, Jang SI, Lillehoj EP, Bravo D (2013) Dietary Curcuma longa enhances resistance against Eimeria maxima and Eimeria tenella infections in chickens. Poult Sci 92(10):2635–2643

    Article  CAS  PubMed  Google Scholar 

  • Knubben-Schweizer G, Torgerson PR (2015) Bovine fasciolosis: control strategies based on the location of Galba truncatula habitats on farms. Vet Parasitol 208(1–2):77–83

    Google Scholar 

  • Königová A, Várady M, Čorba J (2003) Comparison of in vitro methods and faecal egg count reduction test for the detection of benzimidazole resistance in small strongyles of horses. Vet Res Commun 27(4):281–288

    Article  PubMed  Google Scholar 

  • Krauth-Siegel RL, Comini MA (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 1780(11):1236–1248

    Google Scholar 

  • Kumar S, Gupta AK, Pal Y, Dwivedi SK (2003) In-vivo therapeutic efficacy trial with artemisinin derivative, buparvaquone and imidocarb dipropionate against Babesia equi infection in donkeys. J Vet Med Sci 65(11):1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Lanusse C, Alvarez L, Lifschitz A (2014) Pharmacological knowledge and sustainable anthelmintic therapy in ruminants. Vet Parasitol 204(1–2):18–33

    Article  CAS  PubMed  Google Scholar 

  • Lathers CM (2003) Challenges and opportunities in animal drug development: a regulatory perspective. Nat Rev Drug Discov 2(11):915–918

    Article  CAS  PubMed  Google Scholar 

  • Mazuz ML, Golenser J, Fish L, Haynes RK, Wollkomirsky R, Leibovich B, Shkap V (2013) Artemisone inhibits in vitro and in vivo propagation of Babesia bovis and B. bigemina parasites. Exp Parasitol 135(4):690–694

    Article  CAS  PubMed  Google Scholar 

  • McKerrow JH (2015) Recognition of the role of Natural Products as drugs to treat neglected tropical diseases by the 2015 Nobel prize in physiology or medicine. Nat Prod Rep 32:1610–1611

    Article  CAS  PubMed  Google Scholar 

  • Molan AL, Liu Z, De S (2009) Effect of pine bark (Pinus radiata) extracts on sporulation of coccidian oocysts. Folia Parasitol (Praha). 56(1):1–5

    Article  PubMed  Google Scholar 

  • Morrison WI (2015) The aetiology, pathogenesis and control of theileriosis in domestic animals. Rev Sci Tech 34(2):599–611

    Google Scholar 

  • Mosqueda J, Olvera-Ramirez A, Aguilar-Tipacamu G, Canto GJ (2012) Current advances in detection and treatment of babesiosis. Curr Med Chem 19(10):1504–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller J, Hemphill A (2013) New approaches for the identification of drug targets in protozoan parasites. Int Rev Cell Mol Biol 301:359–401

    Google Scholar 

  • Müller J, Hemphill A (2016) Drug target identification in protozoan parasites. Expert Opin Drug Discov 11(8):815–824

    Google Scholar 

  • Muthamilselvan T, Kuo TF, Wu YC, Yang WC (2016) Herbal remedies for coccidiosis control: a review of plants, compounds, and anticoccidial actions. Evid Based Complement Alternat Med:1–19

    Google Scholar 

  • Ndjonka D, Rapado LN, Silber AM, Liebau E, Wrenger C (2013) Natural products as a source for treating neglected parasitic diseases. Int J Mol Sci 14(2):3395–3439

    Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335

    Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    Article  CAS  PubMed  Google Scholar 

  • Ngo LT, Okogun JI, Folk WR (2013) 21st century natural product research and drug development and traditional medicines. Nat Prod Rep 30(4):584–592

    Google Scholar 

  • Nobel Prize (2015) http://www.nobelprize.org/nobel_prizes/medicine/laureates/2015/

  • Nosengo N (2016) Can you teach old drugs new tricks? Nature 14;534(7607):314–316

    Google Scholar 

  • Olliaro P, Seiler J, Kuesel A, Horton J, Clark JN, Don R, Keiser J (2011) Potential drug development candidates for human soil-transmitted helminthiases. PLoS Negl Trop Dis 5(6):e1138

    Google Scholar 

  • Paloque L, Ramadani AP, Mercereau–Puijalon O, Augereau JM, Benoit–Vical F (2016) Plasmodium falciparum: multifaceted resistance to artemisinins. Malar J 15:149

    Google Scholar 

  • Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30(12–13):1395–1405

    Google Scholar 

  • Patwardhan B (2005) Ethnopharmacology and drug discovery. J Ethnopharmacol 100(1–2):50–52

    Article  PubMed  Google Scholar 

  • Pink R, Hudson A, Mouriès MA, Bendig M (2005) Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 4(9):727–740

    Google Scholar 

  • Quiroz-Castaneda RE, Dantan-Gonzalez E (2015) Control of avian coccidiosis: future and present natural alternatives. Biomed Res Int. https://doi.org/10.1155/2015/430610

    Google Scholar 

  • Rajput N, Ali S, Naeem M, Khan MA, Wang T (2014) The effect of dietary supplementation with the natural carotenoids curcumin and lutein on pigmentation, oxidative stability and quality of meat from broiler chickens affected by coccidiosis challenge. Br Poult Sci 55(4):501–509

    Article  CAS  PubMed  Google Scholar 

  • Rana AK, Misra-Bhattacharya S (2013) Current drug targets for helminthic diseases. Parasitol Res 112:1819–1831

    Article  PubMed  Google Scholar 

  • Roeber F, Jex AR, Gasser RB (2013) Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance—an Australian perspective. Parasit Vectors 6:153

    Google Scholar 

  • Saifi MA, Beg T, Harrath AH, Altayalan FSH, Quraishy SA (2013) Antimalarial drugs: mode of action and status of resistance. Afr J Pharm Pharmacol 7(5):148–156

    Google Scholar 

  • Shahiduzzaman M, Daugschies A (2012) Therapy and prevention of cryptosporidiosis in animals. Vet Parasitol 188(3–4):203–214

    Google Scholar 

  • Shears MJ, Botté CY, McFadden GI (2015) Fatty acid metabolism in the Plasmodium apicoplast: drugs, doubts and knockouts. Mol Biochem Parasitol 199(1–2):34–50

    Google Scholar 

  • Singh S, Pathak AK, Sharma RK, Khan M (2015) Effect of tanniferous leaf meal based multi-nutrient blocks on feed intake, hematological profile, immune response, and body weight changes in Haemonchus contortus infected goats. Vet World 8(5):572–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner-Adams TS, Sumanadasa SD, Fisher GM, Davis RA, Doolan DL, Andrews KT (2016) Defining the target of antiparasitic compounds. Drug Discov Today 21(5):725–739

    Google Scholar 

  • Torgerson PR (2013) One world health: socioeconomic burden and parasitic disease control priorities. Vet Parasitol 195(3–4):223–232

    Google Scholar 

  • United Nations Population Fund (2012) Population dynamics in the least developed countries: challenges and opportunities for development and poverty reduction. http://www.unfpa.org/sites/default/files/pub-pdf/CP51265.pdf

  • Vernerova E, Vondrova R, Kisova H, Svobodova V, Hera A (2009) Detection of benzimidazole resistance in gastrointestinal nematode parasites of sheep in the Czech Republic. Veterinari Medicina 54(10):467–472

    Article  CAS  Google Scholar 

  • Waller PJ (2006) From discovery to development: current industry perspectives for the development of novel methods of helminth control in livestock. Vet Parasitol 139(1–3):1–14

    Google Scholar 

  • WHO (2015) World Malaria Report. http://www.who.int/malaria/media/world-malaria-report-2015/en/

  • WHO (2016) http://www.who.int/en/

  • WHO GBD (2016) http://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html

  • Wink (2010) Occurrence and function of natural products in plants, in Phytochemistry and Pharmacognosy, [Eds.John M.Pezzuto, Massuo Jorge Kato], in Encyclopedia of Life Support Systems(EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK

    Google Scholar 

  • Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2(3):251–286

    Google Scholar 

  • Williams AR, Fryganas C, Ramsay A, Mueller-Harvey I, Thamsborg SM (2014a) Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum. PLoS ONE 9(6):e97053

    Google Scholar 

  • Williams AR, Ropiak HM, Fryganas C, Desrues O, Mueller-Harvey I, Thamsborg SM (2014b) Assessment of the anthelmintic activity of medicinal plant extracts and purified condensed tannins against free-living and parasitic stages of Oesophagostomum dentatum. Parasit Vectors 7:518

    Google Scholar 

  • Woolhouse MEJ, Gowtage-Sequeria S (2005) Host range and emerging and reemerging pathogens. Emerg Infect Dis 11(12):1842–1847

    Google Scholar 

  • Zhou S, Koh HL, Gao Y, Gong ZY, Lee EJ (2004) Herbal bioactivation: the good, the bad and the ugly. Life Sci 74(8):935–968

    Google Scholar 

  • Ziegler S, Pries V, Hedberg C, Waldmann H (2013) Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Engl 52(10):2744–2792

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Haddad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paloque, L., Triastuti, A., Bourdy, G., Haddad, M. (2018). Natural Products as Antiparasitic Agents. In: Mérillon, JM., Riviere, C. (eds) Natural Antimicrobial Agents. Sustainable Development and Biodiversity, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-67045-4_9

Download citation

Publish with us

Policies and ethics