An Overview of the Antimicrobial Properties of Hop

  • Laetitia Bocquet
  • Sevser Sahpaz
  • Céline RivièreEmail author
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 19)


Hop (Humulus lupulus L., Cannabaceae) is an edible and medicinal plant. Female inflorescences (hops) are used in the brewing industry for their bitterness and for their antiseptic properties. Hops are also used as traditional herbal medicinal product to help relieve the mild symptoms of mental stress and to aid sleep. The research on hop and on its secondary metabolites has accelerated considerably over the course of the past ten years, due to the ability of this plant to biosynthesize original prenylated phenolic compounds (phloroglucinol derivatives well known as bitter acids, chalcones, flavanones). Some of them have demonstrated a wide range of biological and pharmacological activities, including estrogenic, anti-inflammatory, antioxidant, cancer chemopreventive, and antimicrobial effects. This chapter is an overview of the antimicrobial potential of hops. The antibacterial properties of female inflorescences against Gram-positive bacteria have been well-documented. Xanthohumol, the main prenylated chalcone of hops, and lupulone, the leading compound of β-acids, show a very strong activity. Hops also inhibit the replication and the proliferation of some viruses such as hepatitis C virus (HCV) and human immunodeficiency virus (HIV). Antifungal activity is limited to studies on few fungal pathogens including Trichophyton sp., Mucor rouxianus, and Fusarium oxysporum. Some secondary metabolites of hops also strongly inhibit the causal pathogen of malaria, Plasmodium falciparum. The numerous highlighted antimicrobial activities in this chapter show the promising interest of hops’ phenolic compounds for pharmaceutical, cosmetic, and food industries.


Hops Antimicrobial activities Phenolic compounds 


  1. Abram V, Čeh B, Vidmar M, Hercezi M, Lazíc N, Bucik V, Možina SS, Košir IJ, Kač M, Demšar L, Ulrih NP (2015) A comparison of antioxidant and antimicrobial activity between hop leaves and hop cones. Ind Crops Prod 64:124–134CrossRefGoogle Scholar
  2. Aghamiri V, Mirghafourvand M, Mohammad-Alizadeh-Charandabi S, Nazemiyeh H (2016) The effect of Hop (Humulus lupulus L.) on early menopausal symptoms and hot flashes: a randomized placebo-controlled trial. Complement Ther Clin Pract 23:130–135CrossRefPubMedGoogle Scholar
  3. Akazawa H, Kohno H, Tokuda H, Suzuki N, Yasukawa K, Kimura Y, Manosroi A, Manosroi J, Akihisa T (2012) Anti-Inflammatory and Anti-Tumor-Promoting Effects of 5-Deprenyllupulonol C and Other Compounds from Hop (Humulus lupulus L.). Chem Biodiv 9:1045–1053CrossRefGoogle Scholar
  4. Akdemir Evrendilek G (2015) Empirical prediction and validation of antibacterial inhibitory effects of various plant essential oils on common pathogenic bacteria. Int J Food Microbiol 202:35–41CrossRefPubMedGoogle Scholar
  5. Allsopp P, Possemiers S, Campbell D, Gill C, Rowland I (2013) A comparison of the anticancer properties of isoxanthohumol and 8-Prenylnaringenin using in Vitro models of colon cancer. BioFactors 39(4):441–447CrossRefPubMedGoogle Scholar
  6. Bhattacharya S, Virani S, Zavro M, Hass GJ (2003) Inhibition of Streptococcus mutans and other oral streptococci by hop (Humulus lupulus L.) constituents. Econ Bot 57(1):118–125CrossRefGoogle Scholar
  7. Boberg J, Taxvig C, Christiansen S, Hass U (2010) Possible endocrine disrupting effects of parabens and their metabolites. Reprod Toxicol 30(2):301–312CrossRefPubMedGoogle Scholar
  8. Buckwold VE, Wilson RJH, Nalca A, Beer BB, Voss TG, Turpin JA, Buckheit RW III, Wei J, Wenzel-Mathers M, Walton EM, Smith RJ, Pallansch M, Ward P, Wells J, Chuvala L, Sloane S, Paulman R, Russell J, Hartman T, Ptak R (2004) Antiviral activity of hop constituents against a series of DNA and RNA viruses. Antivir Res 61(1):57–62CrossRefPubMedGoogle Scholar
  9. Cazarolli LH, Kappel VD, Zanatta AP, Suzuki DOH, Yunes RY, Nunes RJ, Pizzolatti MG, Silva FRMB (2013) Natural and synthetic chalcones: tools for the study of targets of action—insulin secretagogue or insulin mimetic. In: Attar U-Rahman (eds) Studies in natural products chemistry, vol 39. Elsevier Science BV, Amsterdam, pp 47–90Google Scholar
  10. Čermák P, Palečková V, Houška M, Strohalm J, Novotná P, Mikyška A, Jurková M, Sikorová M (2015) Inhibitory effects of fresh hops on Helicobacter pylori strains. Czech J Food Sci 33(4):302–307Google Scholar
  11. Chadwick LR, Pauli GF, Farnsworth NR (2006) The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine 13(1–2):119–131CrossRefPubMedGoogle Scholar
  12. Clark SM, Vaitheeswaran V, Ambrose SJ, Purves RW, Page JE (2013) Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus). BMC Plant Biol 13:1–12CrossRefGoogle Scholar
  13. De Keukeleire J, Ooms G, Heyerick A, Roldan-Ruiz I, Van Bockstaele E, De Keukeleire D (2003) Formation and accumulation of α-Acids, β-Acids, Desmethylxanthohumol, and Xanthohumol during flowering of hops (Humulus lupulus L.). J Agric Food Chemistry 51(15):4436–4441CrossRefGoogle Scholar
  14. De Keukeleire J, Janssens I, Heyerick A, Ghekiere G, Cambie J, Roldán-Ruiz I, Van Bockstaele E, De Keukeleire D (2007) Relevance of organic farming and effect of climatological conditions on the formation of α-Acids, β-Acids, Desmethylxanthohumol, and Xanthohumol in hop (Humulus lupulus L.). J Agric Food Chem 55(1):61–66CrossRefPubMedGoogle Scholar
  15. Dorn C, Bataille F, Gaebele E, Heilmann J, Hellerbrand C (2010) Xanthohumol feeding does not impair organ function and homoeostasis in mice. Food Chem Toxicol 48(7):1890–1897CrossRefPubMedGoogle Scholar
  16. Engelson M, Solberg M, Karmas E (1980) Anti-mycotic properties of hop extract in reduced water activity media. J Food Sci 45(5):1175–1178CrossRefGoogle Scholar
  17. European Commission (2014) Agriculture and rural development. Hop report for the harvest year 2014. Accessed 30 Nov 2016
  18. European Medicines Agency (2014) Community herbal monograph on Humulus lupulus L., flos -EMA/HMPC/682384/2013 (Committee on Herbal Medicinal Products-HMPC)Google Scholar
  19. Faivre C, Ghedira K, Goetz P, Lejeune R, Staub H (2007) Humulus lupulus L. Phytothérapie 5(2):86–89CrossRefGoogle Scholar
  20. Frölich S, Schubert C, Bienzle U, Jenett-Siems K (2005) In Vitro Antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus lupulus) and their interaction with Haemin. J Antimicrob Chemother 55(6):883–887CrossRefPubMedGoogle Scholar
  21. Frölich S, Schubert C, Jenett-Siems K (2009) Antimalarials from prenylated chalcone derivatives of hops. In: Preedy VR (ed) Beer in health and disease prevention. Academic Press, San Diego, pp 747–752CrossRefGoogle Scholar
  22. Gerhäuser C (2005) Broad spectrum anti-infective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Mol Nutr Food Res 49(9):827–831CrossRefPubMedGoogle Scholar
  23. Gibbons S (2008) Phytochemicals for bacterial resistance—strengths, weaknesses and opportunities. Planta Med 74(6):594–602CrossRefPubMedGoogle Scholar
  24. Hall Amy J, Babish John G, Darland Gary K, Carroll Brian J, Konda Veera Reedy, Lerman Robert H, Bland Jeffery S, Tripp Matthew L, Hall AJ, Babish JG, Darland GK, Carroll BJ, Konda VR, Lerman RH, Bland JS, Tripp ML (2008) Safety, efficacy and anti-inflammatory activity of rho iso-alpha-acids from hops. Phytochemistry 69(7):1534–1547CrossRefPubMedGoogle Scholar
  25. Herath W, Ferreira W, Khan SI, Khan IA (2003) Identification and biological activity of microbial metabolites of xanthohumol. Chem Pharm Bull 51(11):1237–1240CrossRefPubMedGoogle Scholar
  26. Hussong R, Frank N, Knauft J, Ittrich C, Owen R, Becker H, Gerhaüser (2005). A safety study of oral xanthohumol administration and its influence on fertility in Sprague Dawley rats. Mol Nutr Food Res 49(9):861–867Google Scholar
  27. Jirovetz L, Bail S, Buchbauer G, Denkova Z, Slavchev A, Stoyanova A, Schmidt E, Geissler M (2006) Antimicrobial testings, gas chromatographic analysis and olfactory evaluation of an essential oil of hop cones (Humulus lupulus L.) from Bavaria and some of its main compounds. Sci Pharm 74:189–201CrossRefGoogle Scholar
  28. Karabin M, Hudcová T, Jelínek L, Dostálek P (2015) Biotransformations and biological activities of hop flavonoids. Biotechnol Adv 33:1063–1090CrossRefPubMedGoogle Scholar
  29. Karabín M, Hudcová T, Jelínek L, Dostálek P (2016) Biologically active compounds from hops and prospects for their use. Compr Rev Food Sci F 15(3):542–567CrossRefGoogle Scholar
  30. Kitamura K, Komiyama O, Tobe H (1998) Pharmaceutical composition for treating osteoporosis containing xanthohumol. US Patent 5,679,716 AGoogle Scholar
  31. Kotan R, Kordali S, Cakir A (2007) Screening of antibacterial activities of Twenty-One oxygenated monoterpenes. Z Naturforsch C 62(7–8):507–513PubMedGoogle Scholar
  32. Kramer B, Thielmann J, Hickisch A, Muranyi P, Wunderlich J, Hauser C (2015) Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J Appl Microbiol 118(3):648–657CrossRefPubMedGoogle Scholar
  33. Krause E, Yuan Y, Hajirahimkhan A, Dong H, Dietz BM, Nikolic D, Pauli GF, Bolton JL, van Breemen RB (2014) Biological and chemical standardization of a hop (Humulus lupulus) botanical dietary supplement. Biomed Chromatogr 28(6):729–734CrossRefPubMedPubMedCentralGoogle Scholar
  34. Langezaal CR, Chandra A, Scheffer JJC (1992) Antimicrobial screening of essential oils and extracts of some Humulus lupulus L. cultivars. Pharm Weekbl 14(6):353–356CrossRefGoogle Scholar
  35. Larson AE, Yu RR, Lee OA, Price S, Haas GJ, Johnson EA (1996) Antimicrobial activity of hop extracts against Listeria monocytogenes in media and in food. Int J Food Microbiol 33(2–3):195–207CrossRefPubMedGoogle Scholar
  36. Legette L, Ma L, Reed RL, Miranda CL, Christensen JM, Rodriguez-Proteau R, Stevens JF (2012) Pharmacokinetics of xanthohumol and metabolites in rats after oral and intravenous administration. Mol Nutr Food Res 56(3):466–474CrossRefPubMedGoogle Scholar
  37. Legette L, Karnpracha C, Reed RL, Choi J, Bobe G, Christensen JM, Rodriguez-Proteau R, Purnell JQ, Stevens JF (2014) Human pharmacokinetics of xanthohumol, an anti-hyperglycemic flavonoid from hops. Mol Nutr Food Res 58(2):248–255CrossRefPubMedGoogle Scholar
  38. Lou S, Zheng YM, Liu SL, Qiu J, Han Q, Li N, Zhu Q, Zhang P, Yang C, Liu Z (2014) Inhibition of hepatitis C virus replication In Vitro by xanthohumol, a natural product present in hops. Planta Med 80(2–3):171–176PubMedGoogle Scholar
  39. Lundov MD, Krongaard T, Menné TL, Johansen JD (2011) Methylisothiazolinone contact allergy: a review. Br J Dermatol 165(6):1178–1182CrossRefPubMedGoogle Scholar
  40. Mabberley DJ (2009) Mabberley’s Plant-Book. a portable dictionary of plants, their classification and uses. Third edition, completely revised. Cambridge University Press, Cambridge, UK, p 1021Google Scholar
  41. Malizia RA, Molli JS, Cardell DA, Grau RJA (1999) Essential oil of hop cones (Humulus lupulus L.). J Essent Oil Res 11(1):13–15Google Scholar
  42. Matousek J, Kocábek T, Patzak J, Stehlík J, Füssy Z, Krofta K, Heyerick A, Roldán-Ruiz I, Maloukh L, De Keukeleire D (2010) Cloning and molecular analysis of HlbZip1 and HlbZip2 transcription factors putatively involved in the regulation of the lupulin metabolome in hop (Humulus lupulus L.). J Agric Food Chem 58:902–912CrossRefPubMedGoogle Scholar
  43. Mizobuchi S, Sato Y (1984) A new flavanone with antifungal activity isolated from hops. Agric Biol Chem 48(11):2771–2775Google Scholar
  44. Mizobuchi S, Sato Y (1985) Antifungal activities of hop bitter resins and related compounds. Agric Biol Chem 49(2):399–403Google Scholar
  45. Mouratidis PXE, Colston KW, Tucknott ML, Tyrrell E, Pirianov G (2013) An investigation into the anticancer effects and mechanism of action of hop β-Acid Lupulone and its natural and synthetic derivatives in prostate cancer cells. Nutr Cancer 65(7):1086–1092CrossRefPubMedGoogle Scholar
  46. Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF, Page JE (2008) EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20(1):186–200CrossRefPubMedPubMedCentralGoogle Scholar
  47. Natarajan P, Katta S, Andrei I, Babu Rao Ambati V, Leonida M, Haas GJ (2008) Positive antibacterial co-action between hop (Humulus lupulus) constituents and selected antibiotics. Phytomedicine 15(3):194–201CrossRefPubMedGoogle Scholar
  48. Negi PS (2012) Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol 156(1):7–17CrossRefPubMedGoogle Scholar
  49. Nikolic D, Li Y, Chadwick LR, Grubjesic S, Schwab P, Metz P, van Breemen RB (2004) Metabolism of 8-prenylnaringenin, a potent phytoestrogen from hops (Humulus lupulus), by human liver microsomes. Drug Metab Dispos 32(2):272–279CrossRefPubMedGoogle Scholar
  50. Ohsugi M, Basnet P, Kadota S, Ishii E, Tamura T, Okumura Y, Namba T (1997) Antibacterial activity of traditional medicines and an active constituent lupulone from H. lupulus against Helicobacter pylori. J Trad Med 14:186–191Google Scholar
  51. Paoletti T, Fallarini S, Gugliesi F, Minassi A, Appendino G, Lombardi G (2009) Anti-inflammatory and vascular protective properties of 8-prenylapigenin. Eur J Pharmacol 620(1–3):120–130CrossRefPubMedGoogle Scholar
  52. Possemiers S1, Bolca S, Grootaert C, Heyerick A, Decroos K, Dhooge W, De Keukeleire D, Rabot S, Verstraete W, Van de Wiele T (2006) The prenylflavonoid isoxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine. J Nutr 136(7):1862–1867Google Scholar
  53. Rad M, Hümpel M, Schaefer O, Schoemaker RC, Schleuning WD, Cohen AF, Burggraaf J (2006) Pharmacokinetics and systemic endocrine effects of the phyto-oestrogen 8-prenylnaringenin after single oral doses to postmenopausal women. Br J Clin Pharmacol 62(3):288–296CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rozalski M, Micota B, Sadowska B, Stochmal A, Jedrejek D, Wieckowska-Szakiel M, Rozalska B (2013) Antiadherent and antibiofilm activity of Humulus lupulus L. derived products: new pharmacological properties. Biomed Res Int 2013:101089Google Scholar
  55. Sakamoto K, Konings WN (2003) Beer spoilage bacteria and hop resistance. Int J Food Microbiol 89(2–3):105–124CrossRefPubMedGoogle Scholar
  56. Sansawat T, Lee HC, Zhang L, Ryser ET, Kang I (2016) Antilisterial effects of different hop acids in combination with potassium acetate and potassium diacetate at 7 and 37 °C. Food Control 59:256–261CrossRefGoogle Scholar
  57. Schmalreck AF, Teuber M (1975) Structural features determining the antibiotic potencies of natural and synthetic hop bitter resins, their precursors and derivatives. Can J Microbiol 21(2):205–212CrossRefPubMedGoogle Scholar
  58. Simpson WJ, Smith AR (1992) Factors affecting antibacterial activity of hop compounds and their derivatives. J Appl Bacteriol 72(4):327–334CrossRefPubMedGoogle Scholar
  59. Simpson MG (2010) Plant systematics, 2nd edn. Academic Press (Elsevier), Burlington, USA. 740 pGoogle Scholar
  60. Small E (1978) A numerical and nomenclatural analysis of Morpho-Geographic taxa of Humulus. Syst Bot 3(1):37–76CrossRefGoogle Scholar
  61. Srinivasan V, Goldberg D, Haas GJ (2004) Contributions to the antimicrobial spectrum of hop constituents. Econ Bot 58(1):230–238CrossRefGoogle Scholar
  62. Stevens JF, Taylor AW, Deinzer ML (1999) Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography–tandem mass spectrometry. J Chrom A 832(1–2):97–107CrossRefGoogle Scholar
  63. Stevens JF, Page JE (2004) Xanthohumol and related prenylflavonoids from hops and beer: to your good health. Phytochemistry 65(10):1317–1330CrossRefPubMedGoogle Scholar
  64. Tan KW, Cooney J, Jensen D, Li Y, Paxton JW, Birch NP, Scheepens A (2014) Hop-Derived prenylflavonoids are substrates and inhibitors of the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Mol Nutr Food Res 58(11):2099–2110CrossRefPubMedGoogle Scholar
  65. Teuber M (1970) Low antibiotic potency of isohumulone. Appl Microbiol 19(5):871PubMedPubMedCentralGoogle Scholar
  66. Teuber M, Schmalreck AF (1973) Membrane leakage in Bacillus subtilis 168 induced by the hop constituents lupulone, humulone, isohumulone and humulinic acid. Arch Für Mikrobiol 94(2):159–171CrossRefGoogle Scholar
  67. Tsurumaru Y, Sasaki K, Miyawaki T, Uto Y, Momma T, Umemoto N, Momose M, Yazaki K (2012) HIPT-1, a Membrane-Bound prenyltransferase responsible for the biosynthesis of bitter acids in hops. Biochem Biophys Res Commun 417(1):393–398CrossRefPubMedGoogle Scholar
  68. The Plant List (2013). Accessed 30 Nov 2016
  69. Van Breemen RB, Yuan Y, Banuvar S, Shulman LP, Qiu X, Alvarenga RF, Chen SN, Dietz BM, Bolton JL, Pauli GF, Krause E, Viana M, Nikolic D (2014) Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Mol Nutr Food Res 58(10):1962–1969CrossRefPubMedPubMedCentralGoogle Scholar
  70. Vanhoecke BW, Delporte F, Van Braeckel E, Heyerick A, Depypere HT, Nuytinck M, De Keukeleire D, Bracke ME (2005) A safety study of oral tangeretin and xanthohumol administration to laboratory mice. Vivo 19(1):103–107Google Scholar
  71. Varvaresou A, Papageorgiou S, Tsirivas E, Protopapa E, Kintziou H, Kefala V, Demetzos C (2009) Self-preserving cosmetics. Int J Cosmet Sci 31(3):163–175CrossRefPubMedGoogle Scholar
  72. Villalobos-Delgado LH, Caro I, Blanco C, Bodas R, Andrés S, Giráldez FJ, Mateo J (2015) Effect of the addition of hop (infusion or powder) on the oxidative stability of lean lamb patties during storage. Small Rumin Res 125:73–80CrossRefGoogle Scholar
  73. Wang Q, Ding ZH, Liu JK, Zheng YT (2004) Xanthohumol, a novel anti-HIV-1 agent purified from hops Humulus lupulus. Antiviral Res 64(3):189–194PubMedGoogle Scholar
  74. Wang G, Tian L, Aziz N, Broun P, Dai X, He J, King A, Zhao PX, Dixon RA (2008) Terpene biosynthesis in glandular trichomes of hop. Plant Physiol 148:1254–1266CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wendakoon C, Calderon P, Gagnon D (2012) Evaluation of selected medicinal plants extracted in different ethanol concentrations for antibacterial activity against human pathogens. J Med Act Plants 1(2):60–68Google Scholar
  76. Yamaguchi N, Satoh-Yamaguchi K, Ono M (2009) In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine 16(4):369–376CrossRefPubMedGoogle Scholar
  77. Yang M, Li N, Li F, Zhu Q, Liu X, Han Q, Wang Y, Chen Y, Zeng X, Lv Y, Zhang P, Yang C, Liu Z (2013) Xanthohumol, a main prenylated chalcone from hops, reduces liver damage and modulates oxidative reaction and apoptosis in hepatitis C virus infected Tupaia belangeri. Int Immunopharmacol 16:466–474CrossRefPubMedGoogle Scholar
  78. Zanoli P, Zavatti M (2008) Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharmacol 116(3):383–396CrossRefPubMedGoogle Scholar
  79. Zhang N, Liu Z, Han Q, Chen J, Lou S, Qiu J, Zhang G (2009) Inhibition of bovine viral diarrhea virus in vitro by xanthohumol: comparisons with ribavirin and interferon-α and implications for the development of anti-hepatitis C virus agents. Eur J Pharm Sci 38:332–340CrossRefPubMedGoogle Scholar
  80. Zhang N, Liu Z, Han Q, Chen J, Lv Y (2010) Xanthohumol enhances antiviral effect of interferon α-2b against bovine viral diarrhea virus, a surrogate of hepatitis C virus. Phytomedicine 17:310–316CrossRefPubMedGoogle Scholar
  81. Zhao F, Watanabe Y, Nozawa H, Daikonnya A, Kondo K, Kitanaka S (2005) Prenylflavonoids and phloroglucinol derivatives from hops (Humulus lupulus). J Nat Prod 68:43–49CrossRefPubMedGoogle Scholar
  82. Żołnierczyk AK, Mączka WK, Grabarczyk M, Wińska K, Woźniak E, Anioł M (2015) Isoxanthohumol—Biologically active hop flavonoid. Fitoterapia 103:71–82CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Laetitia Bocquet
    • 1
  • Sevser Sahpaz
    • 1
  • Céline Rivière
    • 1
    Email author
  1. 1.Charles Viollette Research InstituteUniversity of LilleLilleFrance

Personalised recommendations