Antimalarial Terpenic Compounds Isolated from Plants Used in Traditional Medicine (2010–July 2016)

  • Claire Beaufay
  • Joanne Bero
  • Joëlle Quetin-Leclercq
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 19)

Abstract

Malaria is an infectious tropical disease mainly affecting children and sub-Saharan Africa, being one of the major death causes with almost half of the world population at risk. Therefore and to face increasing parasite resistance to available treatments, there is an urgent need to discover new antimalarial drugs. Nature and mostly plants are a resourceful supplier of potential active metabolites, as shown by the successful example of the sesquiterpene lactone: artemisinin. Terpenoids are occurring widely in nature and display a lot of biological activities among which antiplasmodial effects. This review is a compilation of terpenic compounds isolated from plants with moderate (2 µM < IC50 ≤ 11 µM) to strong (IC50 ≤ 2 µM) activity against different strains of Plasmodium published from 2010 to July 2016. Forty-seven references are identified.

Keywords

Terpene Plant compounds Antiplasmodial activity Malaria Plasmodium falciparum 

References

  1. Adams M, Gschwind S, Zimmermann S, Kaiser M, Hamburger M (2011) Renaissance remedies: Antiplasmodial protostane triterpenoids from Alisma plantago-aquatica L. (Alismataceae). J Ethnopharmacol 135(1):43–47CrossRefPubMedGoogle Scholar
  2. Al Musayeib NM, Mothana RA, Gamal AA, Al-Massarani SM, Maes L (2013) In vitro antiprotozoal activity of triterpenoid constituents of Kleinia odora growing in Saudi Arabia. Molecules 18(8):9207–9218CrossRefPubMedGoogle Scholar
  3. Amoa OP, Ntie-Kang F, Lifongo LL, Ndom JC, Sippl W, Mbaze LM (2013) The potential of anti-malarial compounds derived from African medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids. Malar J 12:449CrossRefGoogle Scholar
  4. Armelle TT, Pamela NK, Pierre M, Muller IB, Marat K, Sass G, Ephrem NA (2016) Antiplasmodial Limonoids from Trichilia rubescens (Meliaceae). Med ChemGoogle Scholar
  5. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ (2014) Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371(5):411–423CrossRefPubMedPubMedCentralGoogle Scholar
  6. Becker JV, van der Merwe MM, van Brummelen AC, Pillay P, Crampton BG, Mmutlane EM, Parkinson C, van Heerden FR, Crouch NR, Smith PJ, Mancama DT, Maharaj VJ (2011). In vitro anti-plasmodial activity of Dicoma anomala subsp. gerrardii (Asteraceae): identification of its main active constituent, structure-activity relationship studies and gene expression profiling. Malar J 10:295Google Scholar
  7. Bero J, Frederich M, Quetin-Leclercq J (2009) Antimalarial compounds isolated from plants used in traditional medicine. J Pharm Pharmacol 61(11):1401–1433CrossRefPubMedGoogle Scholar
  8. Bero J, Herent MF, Schmeda-Hirschmann G, Frederich M, Quetin-Leclercq J (2013) In vivo antimalarial activity of Keetia leucantha twigs extracts and in vitro antiplasmodial effect of their constituents. J Ethnopharmacol 149(1):176–183CrossRefPubMedGoogle Scholar
  9. Bero J, Quetin-Leclercq J (2011) Natural products published in 2009 from plants traditionally used to treat malaria. Planta Med 77(6):631–640CrossRefPubMedGoogle Scholar
  10. Boniface PK, Pal A (2013) Substantiation of the ethnopharmacological use of Conyza sumatrensis (Retz.) E.H.Walker in the treatment of malaria through in-vivo evaluation in Plasmodium berghei infected mice. J Ethnopharmacol 145(1):373–377CrossRefPubMedGoogle Scholar
  11. Chinaeke EE, Chime SA, Onyishi VI, Attama AA, Okore VC (2015) Formulation development and evaluation of the anti-malaria properties of sustained release artesunate-loaded solid lipid microparticles based on phytolipids. Drug Deliv 22(5):652–665CrossRefPubMedGoogle Scholar
  12. Claudino VD, da Silva KC, Cechinel FV, Yunes RA, Delle MF, Gimenez A, Salamanca E, Gutierrez-Yapu D, Malheiros A (2013) Drimanes from Drimys brasiliensis with leishmanicidal and antimalarial activity. Mem Inst Oswaldo Cruz 108(2):140–144Google Scholar
  13. Clemens J, Moorthy V (2016) Implementation of RTS, S/AS01 malaria vaccine-the need for further evidence. N Engl J Med 374(26):2596–2597CrossRefPubMedGoogle Scholar
  14. Dastan D, Salehi P, Reza GA, Zimmermann S, Kaiser M, Hamburger M, Reza KH, Ebrahimi SN (2012) Disesquiterpene and sesquiterpene coumarins from Ferula pseudalliacea, and determination of their absolute configurations. Phytochemistry 78:170–178CrossRefPubMedGoogle Scholar
  15. Deharo E, Ginsburg H (2011) Analysis of additivity and synergism in the anti-plasmodial effect of purified compounds from plant extracts. Malar J 10(Suppl 1):S5CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dwivedi P, Khatik R, Chaturvedi P, Khandelwal K, Taneja I, Raju KS, Dwivedi H, Singh SK, Gupta PK, Shukla P, Tripathi P, Singh S, Tripathi R, Wahajuddin PS, Dwivedi AK, Mishra PR (2015) Arteether nanoemulsion for enhanced efficacy against Plasmodium yoelii nigeriensis malaria: an approach by enhanced bioavailability. Colloids Surf B Biointerfaces 126:467–475CrossRefPubMedGoogle Scholar
  17. Ebrahimi SN, Zimmermann S, Zaugg J, Smiesko M, Brun R, Hamburger M (2013) Abietane diterpenoids from Salvia sahendica–antiprotozoal activity and determination of their absolute configurations. Planta Med 79(2):150–156CrossRefPubMedGoogle Scholar
  18. Egieyeh SA, Syce J, Malan SF, Christoffels A (2016) Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs. Malar J 15:50CrossRefPubMedPubMedCentralGoogle Scholar
  19. Elfawal MA, Towler MJ, Reich NG, Golenbock D, Weathers PJ, Rich SM (2012) Dried whole plant Artemisia annua as an antimalarial therapy. PLoS ONE 7(12):e52746CrossRefPubMedPubMedCentralGoogle Scholar
  20. Endale A, Bisrat D, Animut A, Bucar F, Asres K (2013) In vivo antimalarial activity of a labdane diterpenoid from the leaves of Otostegia integrifolia Benth. Phytother Res 27(12):1805–1809CrossRefPubMedGoogle Scholar
  21. European Medicines Agency (EMA) (2015) First malaria vaccine receives positive scientific opinion from EMA. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2015/07/WC500190447.pdf
  22. Farimani MM, Taheri S, Ebrahimi SN, Bahadori MB, Khavasi HR, Zimmermann S, Brun R, Hamburger M (2012) Hydrangenone, a new isoprenoid with an unprecedented skeleton from Salvia hydrangea. Org Lett 14(1):166–169CrossRefPubMedGoogle Scholar
  23. Fujisaki R, Kamei K, Yamamura M, Nishiya H, Inouye S, Takahashi M, Abe S (2012) In vitro and in vivo anti-plasmodial activity of essential oils, including hinokitiol. Southeast Asian J Trop Med Public Health 43(2):270–279PubMedGoogle Scholar
  24. Gachet MS, Kunert O, Kaiser M, Brun R, Zehl M, Keller W, Munoz RA, Bauer R, Schuehly W (2011) Antiparasitic compounds from Cupania cinerea with activities against Plasmodium falciparum and Trypanosoma brucei rhodesiense. J Nat Prod 74(4):559–566CrossRefPubMedGoogle Scholar
  25. Ganfon H, Bero J, Tchinda AT, Gbaguidi F, Gbenou J, Moudachirou M, Frederich M, Quetin-Leclercq J (2012) Antiparasitic activities of two sesquiterpenic lactones isolated from Acanthospermum hispidum D.C. J Ethnopharmacol acceptedGoogle Scholar
  26. Ginsburg H, Deharo E (2011) A call for using natural compounds in the development of new antimalarial treatments-an introduction. Malar J 10(Suppl 1):S1CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gokbulut A, Kaiser M, Brun R, Sarer E, Schmidt TJ (2012) 9beta-hydroxyparthenolide esters from Inula montbretiana and their antiprotozoal activity. Planta Med 78(3):225–229CrossRefPubMedGoogle Scholar
  28. Grace MH, Lategan C, Mbeunkui F, Graziose R, Smith PJ, Raskin I, Lila MA (2010) Antiplasmodial and cytotoxic activities of drimane sesquiterpenes from Canella winterana. Nat Prod Commun 5(12):1869–1872PubMedGoogle Scholar
  29. Graziose R, Grace MH, Rathinasabapathy T, Rojas-Silva P, Dekock C, Poulev A, Lila MA, Smith P, Raskin I (2013) Antiplasmodial activity of cucurbitacin glycosides from Datisca glomerata (C. Presl) Baill. Phytochemistry 87:78–85CrossRefPubMedGoogle Scholar
  30. Graziose R, Rathinasabapathy T, Lategan C, Poulev A, Smith PJ, Grace M, Lila MA, Raskin I (2011) Antiplasmodial activity of aporphine alkaloids and sesquiterpene lactones from Liriodendron tulipifera L. J Ethnopharmacol 133(1):26–30CrossRefPubMedGoogle Scholar
  31. Hadi V, Hotard M, Ling T, Salinas YG, Palacios G, Connelly M, Rivas F (2013) Evaluation of Jatropha isabelli natural products and their synthetic analogs as potential antimalarial therapeutic agents. Eur J Med Chem 65:376–380CrossRefPubMedGoogle Scholar
  32. Happi GM, Kouam SF, Talontsi FM, Lamshoft M, Zuhlke S, Bauer JO, Strohmann C, Spiteller M (2015a) Antiplasmodial and Cytotoxic Triterpenoids from the Bark of the Cameroonian Medicinal Plant Entandrophragma congoense. J Nat Prod 78(4):604–614CrossRefPubMedGoogle Scholar
  33. Happi GM, Kouam SF, Talontsi FM, Zuhlke S, Lamshoft M, Spiteller M (2015b) Minor secondary metabolites from the bark of Entandrophragma congoense (Meliaceae). Fitoterapia 102:35–40CrossRefPubMedGoogle Scholar
  34. Hoffman SL, Vekemans J, Richie TL, Duffy PE (2015) The march toward malaria vaccines. Vaccine 33(Suppl 4):D13–D23CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jansen O, Tits M, Angenot L, Nicolas JP, De MP, Nikiema JB, Frederich M (2012) Anti-plasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound. Malar J 11:289CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kalani K, Agarwal J, Alam S, Khan F, Pal A, Srivastava SK (2013) In silico and in vivo anti-malarial studies of 18beta glycyrrhetinic acid from Glycyrrhiza glabra. PLoS ONE 8(9):e74761CrossRefPubMedPubMedCentralGoogle Scholar
  37. Leeson P (2012) Drug discovery: chemical beauty contest. Nature 481(7382):455–456CrossRefPubMedGoogle Scholar
  38. Liu J, He XF, Wang GH, Merino EF, Yang SP, Zhu RX, Gan LS, Zhang H, Cassera MB, Wang HY, Kingston DG, Yue JM (2014a) Aphadilactones A-D, four diterpenoid dimers with DGAT inhibitory and antimalarial activities from a Meliaceae plant. J Org Chem 79(2):599–607CrossRefPubMedGoogle Scholar
  39. Liu Y, Rakotondraibea LH, Brodie PJ, Wiley JD, Cassera MB, Goetzc M, Kingstona DG (2014b) Antiproliferative and antimalarial sesquiterpene lactones from Piptocoma antillana from Puerto Rico. Nat Prod Commun 9(10):1403–1406PubMedPubMedCentralGoogle Scholar
  40. Ma G, Sun Z, Sun Z, Yuan J, Wei H, Yang J, Wu H, Xu X (2014) Antimalarial diterpene alkaloids from the seeds of Caesalpinia minax. Fitoterapia 95:234–239CrossRefPubMedGoogle Scholar
  41. Maas M, Hensel A, Costa FB, Brun R, Kaiser M, Schmidt TJ (2011) An unusual dimeric guaianolide with antiprotozoal activity and further sesquiterpene lactones from Eupatorium perfoliatum. Phytochemistry 72(7):635–644CrossRefPubMedGoogle Scholar
  42. Machumi F, Samoylenko V, Yenesew A, Derese S, Midiwo JO, Wiggers FT, Jacob MR, Tekwani BL, Khan SI, Walker LA, Muhammad I (2010) Antimicrobial and antiparasitic abietane diterpenoids from the roots of Clerodendrum eriophyllum. Nat Prod Commun 5(6):853–858PubMedPubMedCentralGoogle Scholar
  43. Machumi F, Yenesew A, Midiwo JO, Heydenreich M, Kleinpeter E, Tekwani BL, Khan SI, Walker LA, Muhammad I (2012) Antiparasitic and anticancer carvotacetone derivatives of Sphaeranthus bullatus. Nat Prod Commun 7(9):1123–1126PubMedGoogle Scholar
  44. Mba’ning BM, Lenta BN, Noungoue DT, Antheaume C, Fongang YF, Ngouela SA, Boyom FF, Rosenthal PJ, Tsamo E, Sewald N, Laatsch H (2013) Antiplasmodial sesquiterpenes from the seeds of Salacia longipes var. camerunensis. Phytochemistry 96:347–352CrossRefPubMedGoogle Scholar
  45. Mishra K, Dash AP, Dey N (2011) Andrographolide: a novel antimalarial diterpene lactone compound from Andrographis paniculata and its interaction with curcumin and artesunate. J Trop Med 2011:579518CrossRefPubMedPubMedCentralGoogle Scholar
  46. Namukobe J, Kiremire BT, Byamukama R, Kasenene JM, Akala HM, Kamau E, Dumontet V (2015) Antiplasmodial compounds from the stem bark of Neoboutonia macrocalyx pax. J Ethnopharmacol 162:317–322CrossRefPubMedGoogle Scholar
  47. Namukobe J, Kiremire BT, Byamukama R, Kasenene JM, Dumontet V, Gueritte F, Krief S, Florent I, Kabasa JD (2014) Cycloartane triterpenes from the leaves of Neoboutonia macrocalyx L. Phytochemistry 102:189–196CrossRefPubMedGoogle Scholar
  48. Pan E, Gorka AP, Alumasa JN, Slebodnick C, Harinantenaina L, Brodie PJ, Roepe PD, Randrianaivo R, Birkinshaw C, Kingston DG (2011) Antiplasmodial and antiproliferative pseudoguaianolides of Athroisma proteiforme from the Madagascar dry forest. J Nat Prod 74(10):2174–2180CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pereira TB, Rocha e Silva LF, Amorim RC, Melo MR, Zacardi de Souza RC, Eberlin MN, Lima ES, Vasconcellos MC, Pohlit AM (2014) In vitro and in vivo anti-malarial activity of limonoids isolated from the residual seed biomass from Carapa guianensis (andiroba) oil production. Malar J 13:317Google Scholar
  50. Ramalhete C, da Cruz FP, Lopes D, Mulhovo S, Rosario VE, Prudencio M, Ferreira MJ (2011) Triterpenoids as inhibitors of erythrocytic and liver stages of Plasmodium infections. Bioorg Med Chem 19(24):7474–7481CrossRefPubMedGoogle Scholar
  51. Ramalhete C, Lopes D, Mulhovo S, Molnar J, Rosario VE, Ferreira MJ (2010) New antimalarials with a triterpenic scaffold from Momordica balsamina. Bioorg Med Chem 18(14):5254–5260CrossRefPubMedGoogle Scholar
  52. Rasoanaivo P, Wright CW, Willcox ML, Gilbert B (2011) Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J 10(Suppl 1):S4CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rts SCTP (2015) Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386(9988):31–45CrossRefGoogle Scholar
  54. Rumalla CS, Ali Z, Weerasooriya AD, Smillie TJ, Khan IA (2010) Two new triterpene glycosides from Centella asiatica. Planta Med 76(10):1018–1021CrossRefPubMedGoogle Scholar
  55. Sa MS, de Menezes MN, Krettli AU, Ribeiro IM, Tomassini TC, dos Ribeiro SR, de Azevedo WFJ, Soares MB (2011) Antimalarial activity of physalins B, D, F, and G. J Nat Prod 74(10):2269–2272CrossRefPubMedGoogle Scholar
  56. Schmidt TJ, Kaiser M, Brun R (2011) Complete structural assignment of serratol, a cembrane-type diterpene from Boswellia serrata, and evaluation of its antiprotozoal activity. Planta Med 77(8):849–850CrossRefPubMedGoogle Scholar
  57. Sibley CH (2015) Infectious diseases. Understanding artemisinin resistance. Science 347(6220):373–374CrossRefPubMedGoogle Scholar
  58. Silva GN, Rezende LC, Emery FS, Gosmann G, Gnoatto SC (2015) natural and semi synthetic antimalarial compounds: emphasis on the terpene class. Mini Rev Med Chem 15(10):809–836CrossRefPubMedGoogle Scholar
  59. Singh C, Chaudhary S, Puri SK (2006) New orally active derivatives of artemisinin with high efficacy against multidrug-resistant malaria in mice. J Med Chem 49(24):7227–7233CrossRefPubMedGoogle Scholar
  60. Slusarczyk S, Zimmermann S, Kaiser M, Matkowski A, Hamburger M, Adams M (2011) Antiplasmodial and antitrypanosomal activity of tanshinone-type diterpenoids from Salvia miltiorrhiza. Planta Med 77(14):1594–1596CrossRefPubMedGoogle Scholar
  61. Sulsen V, Gutierrez YD, Laurella L, Anesini C, Gimenez TA, Martino V, Muschietti L (2011) In vitro antiplasmodial activity of sesquiterpene lactones from Ambrosia tenuifolia. Evid Based Complement Alternat Med 2011:352938CrossRefPubMedPubMedCentralGoogle Scholar
  62. Talontsi FM, Lamshoft M, Bauer JO, Razakarivony AA, Andriamihaja B, Strohmann C, Spiteller M (2013) Antibacterial and antiplasmodial constituents of Beilschmiedia cryptocaryoides. J Nat Prod 76(1):97–102CrossRefPubMedGoogle Scholar
  63. Tantangmo F, Lenta BN, Boyom FF, Ngouela S, Kaiser M, Tsamo E, Weniger B, Rosenthal PJ, Vonthron-Senecheau C (2010) Antiprotozoal activities of some constituents of Markhamia tomentosa (Bignoniaceae). Ann Trop Med Parasitol 104(5):391–398CrossRefPubMedGoogle Scholar
  64. Thakkar M, S B (2016) Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv Transl Res 6(4):414–425Google Scholar
  65. Toyang NJ, Krause MA, Fairhurst RM, Tane P, Bryant J, Verpoorte R (2013a) Antiplasmodial activity of sesquiterpene lactones and a sucrose ester from Vernonia guineensis Benth. (Asteraceae). J Ethnopharmacol 147(3):618–621CrossRefPubMedPubMedCentralGoogle Scholar
  66. Toyang NJ, Wabo HK, Ateh EN, Davis H, Tane P, Sondengam LB, Bryant J, Verpoorte R (2013b) Cytotoxic sesquiterpene lactones from the leaves of Vernonia guineensis Benth. (Asteraceae). J Ethnopharmacol 146(2):552–556CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tsamo TA, Mkounga P, Njayou FN, Manautou J, Kirk M, Hultin PG, Nkengfack AE (2013) Rubescins A, B and C: new havanensin type limonoids from root bark of Trichilia rubescens (Meliaceae). Chem Pharm Bull (Tokyo) 61(11):1178–1183CrossRefGoogle Scholar
  68. White MT, Verity R, Griffin JT, Asante KP, Owusu-Agyei S, Greenwood B, Drakeley C, Gesase S, Lusingu J, Ansong D, Adjei S, Agbenyega T, Ogutu B, Otieno L, Otieno W, Agnandji ST, Lell B, Kremsner P, Hoffman I, Martinson F, Kamthunzu P, Tinto H, Valea I, Sorgho H, Oneko M, Otieno K, Hamel MJ, Salim N, Mtoro A, Abdulla S, Aide P, Sacarlal J, Aponte JJ, Njuguna P, Marsh K, Bejon P, Riley EM, Ghani AC (2015) Immunogenicity of the RTS, S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial. Lancet Infect Dis 15(12):1450–1458CrossRefPubMedPubMedCentralGoogle Scholar
  69. World Health Organisation (WHO) (2015) World Malaria Report. http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/
  70. Wube AA, Bucar F, Gibbons S, Asres K, Rattray L, Croft SL (2010) Antiprotozoal activity of drimane and coloratane sesquiterpenes towards Trypanosoma brucei rhodesiense and Plasmodium falciparum in vitro. Phytother Res 24(10):1468–1472CrossRefPubMedGoogle Scholar
  71. Zhai X, Wang Q, Li M (2016) Tu Youyou’s Nobel Prize and the academic evaluation system in China. Lancet 387(10029):1722CrossRefPubMedGoogle Scholar
  72. Zhang L, Fourches D, Sedykh A, Zhu H, Golbraikh A, Ekins S, Clark J, Connelly MC, Sigal M, Hodges D, Guiguemde A, Guy RK, Tropsha A (2013) Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. J Chem Inf Model 53(2):475–492CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zimmermann S, Kaiser M, Brun R, Hamburger M, Adams M (2012) Cynaropicrin: the first plant natural product with in vivo activity against Trypanosoma brucei. Planta Med 78(6):553–556CrossRefPubMedGoogle Scholar
  74. Zofou D, Kengne AB, Tene M, Ngemenya MN, Tane P, Titanji VP (2011) In vitro antiplasmodial activity and cytotoxicity of crude extracts and compounds from the stem bark of Kigelia africana (Lam.) Benth (Bignoniaceae). Parasitol Res 108(6):1383–1390CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Claire Beaufay
    • 1
  • Joanne Bero
    • 1
  • Joëlle Quetin-Leclercq
    • 1
  1. 1.Pharmacognosy Research Group, Louvain Drug Research InstituteCatholic University of LouvainBrusselsBelgium

Personalised recommendations