Advertisement

Globalizer Lite: A Software System for Solving Global Optimization Problems

  • Alexander V. SysoyevEmail author
  • Anna S. Zhbanova
  • Konstantin A. Barkalov
  • Victor P. Gergel
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 753)

Abstract

In this paper, we describe the Globalizer Lite software system for solving global optimization problems. This system implements an approach to solving global optimization problems applying a block multistage scheme of dimension reduction that combines the use of Peano curve type evolvents and a multistage reduction scheme. The scheme allows for an efficient parallelization of the computations and a significant increase in the number of processors employed in the parallel solution of global optimization search problems. We also describe the synchronous and asynchronous schemes of MPI-implementation of this approach in the Globalizer Lite software system, and present a comparison of these schemes demonstrating the advantage of the asynchronous variant.

Keywords

Multidimensional multiextremal optimization Global search algorithms Parallel computations Dimension reduction Block multistage dimension reduction scheme 

References

  1. 1.
    Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Glob. Optim. 66, 3–20 (2015). doi: 10.1007/s10898-016-0411-y MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barkalov, K., Gergel, V., Lebedev, I.: Use of xeon phi coprocessor for solving global optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 307–318. Springer, Cham (2015). doi: 10.1007/978-3-319-21909-7_31 CrossRefGoogle Scholar
  3. 3.
    Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on GPU cluster. In: Simos, T.E. (ed.) ICNAAM 2015, AIP Conference Proceedings, vol. 1738, Article No. 400006 (2016). doi: 10.1063/1.4952194
  4. 4.
    Bussieck, M.R., Meeraus, A.: General algebraic modeling system (GAMS). In: Kallrath, J. (ed.) Modeling Languages in Mathematical Optimization. APOP, vol. 88, pp. 137–157. Springer, Boston (2004). doi: 10.1007/978-1-4613-0215-5_8 CrossRefGoogle Scholar
  5. 5.
    Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, Oxford (1998). doi: 10.1016/S0898-1221(98)90713-1 zbMATHGoogle Scholar
  6. 6.
    Ciegis, R., Henty, D., Kgstrm, B., Zilinskas, J. (eds.): Parallel Scientific Computing and Optimization: Advances and Applications. Springer, Heidelberg (2009). doi: 10.1007/978-0-387-09707-7 zbMATHGoogle Scholar
  7. 7.
    Egorov, I.N., Kretinin, G.V., Leshchenko, I.A., Kuptzov, S.V.: IOSO optimization toolkit - novel software to create better design. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, Georgia (2002). doi: 10.2514/6.2002-5514. www.iosotech.com/text/2002_4329.pdf
  8. 8.
    Fasano, G., Pintr, J.D. (eds.): Modeling and Optimization in Space Engineering. Springer, Heidelberg (2013). doi: 10.1007/978-1-4614-4469-5 zbMATHGoogle Scholar
  9. 9.
    Floudas, C.A., Pardalos, M.P.: State of the Art in Global Optimization: Computational Methods and Applications. Kluwer Academic Publishers, Dordrecht (1996). doi: 10.1007/978-1-4613-3437-8 CrossRefzbMATHGoogle Scholar
  10. 10.
    Floudas, C.A., Pardalos, M.P.: Recent Advances in Global Optimization. Princeton University Press, Princeton (2016)Google Scholar
  11. 11.
    Gergel, V.P.: A software system for multiextremal optimization. Eur. J. Oper. Res. 65(3), 305–313 (1993). doi: 10.1016/0377-2217(93)90109-z CrossRefzbMATHGoogle Scholar
  12. 12.
    Gergel, V.: A unified approach to use of coprocessors of various types for solving global optimization problems. In: 2nd International Conference on Mathematics and Computers in Sciences and in Industry, pp. 13–18 (2015). doi: 10.1109/MCSI.2015.18
  13. 13.
    Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for multidimensional global search. J. Glob. Optim. 66(1), 35–51 (2016). doi: 10.1007/s10898-015-0355-7 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gergel, V., Lebedev, I.: Heterogeneous parallel computations for solving global optimization problems. Procedia Comput. Sci. 66, 53–62 (2015). doi: 10.1016/j.procs.2015.11.008 CrossRefGoogle Scholar
  15. 15.
    Gergel, V., Sidorov, S.: A two-level parallel global search algorithm for solution of computationally intensive multiextremal optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 505–515. Springer, Cham (2015). doi: 10.1007/978-3-319-21909-7_49 CrossRefGoogle Scholar
  16. 16.
    Grishagin, V.A., Strongin, R.G.: Optimization of multiextremal functions subject to monotonically unimodal constraints. Eng. Cybern. 5, 117–122 (1984)zbMATHGoogle Scholar
  17. 17.
    Holmstrm, K., Edvall, M.M.: The TOMLAB optimization environment. In: Kallrath, J. (ed.) Modeling Languages in Mathematical Optimization. APOP, vol. 88, pp. 369–376. Springer, Boston (2004). doi: 10.1007/978-1-4613-0215-5_19 CrossRefGoogle Scholar
  18. 18.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Heidelberg (1990)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kearfott, R.B.: Globsol user guide. Optim. Methods Softw. 24, 687–708 (2009). doi: 10.1080/10556780802614051 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liberti, L.: Writing global optimization software. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation. NOIA, vol. 84, pp. 211–262. Springer, Boston (2006). doi: 10.1007/0-387-30528-9_8 CrossRefGoogle Scholar
  21. 21.
    Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24, 657–668 (2009). doi: 10.1080/10556780902753221 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Applications. SIAM, Philadelphia (2013). doi: 10.1137/1.9781611972672 CrossRefzbMATHGoogle Scholar
  23. 23.
    Luque, G., Alba, E.: Parallel Genetic Algorithms. Theory and Real World Applications. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22084-5 CrossRefzbMATHGoogle Scholar
  24. 24.
    Mongeau, M., Karsenty, H., Rouz, V., Hiriart-Urruty, J.B.: Comparison of public-domain software for black box global optimization. Optim. Methods Softw. 13(3), 203–226 (2000). doi: 10.1080/10556780008805783 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mullen, K.M.: Continuous global optimization in R. J. Stat. Softw. 60(6), 1–45 (2014). doi: 10.18637/jss.v060.i06 CrossRefGoogle Scholar
  26. 26.
    Pardalos, M.P., Zhigljavsky, A.A., Zilinskas, J.: Advances in Stochastic and Deterministic Global Optimization. Springer, Cham (2016). doi: 10.1007/978-3-319-29975-4 CrossRefzbMATHGoogle Scholar
  27. 27.
    Pintr, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996). doi: 10.1007/978-1-4757-2502-5 CrossRefGoogle Scholar
  28. 28.
    Pintr, J.D.: Software development for global optimization. In: Pardalos, P.M., Coleman, T.F. (eds.) Lectures on Global Optimization. Fields Institute Communications, vol. 55, pp. 183–204 (2009). doi: 10.1090/fic/055/08
  29. 29.
    Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56(3), 1247–1293 (2012). doi: 10.1007/s10898-012-9951-y MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Global Optim. 8(2), 201–205 (1996). doi: 10.1007/bf00138693 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5(4), 858–870 (1995). doi: 10.1137/0805041 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Sergeyev, Y.D.: Multidimensional global optimization using the first derivatives. Comput. Maths. Math. Phys. 39(5), 743–752 (1999)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Sergeyev, Y.D., Grishagin, V.A.: A parallel method for finding the global minimum of univariate functions. J. Optim. Theory Appl. 80(3), 513–536 (1994). doi: 10.1007/bf02207778 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  36. 36.
    Strongin, R.G.: Numerical Methods in Multiextremal Problems (Information-Statistical Algorithms). Nauka, Moscow (1978). (In Russian)zbMATHGoogle Scholar
  37. 37.
    Strongin, R.G., Gergel, V.P., Grishagin, V.A., Barkalov, K.A.: Parallel Computations for Global Optimization Problems. Moscow State University, Moscow (2013). (In Russian)Google Scholar
  38. 38.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). doi: 10.1007/978-1-4615-4677-1 CrossRefzbMATHGoogle Scholar
  39. 39.
    Törn, A., Žilinskas, A. (eds.): Global Optimization. LNCS, vol. 350. Springer, Heidelberg (1989). doi: 10.1007/3-540-50871-6 zbMATHGoogle Scholar
  40. 40.
    Venkataraman, P.: Applied Optimization with MATLAB Programming. Wiley, Hoboken (2009)Google Scholar
  41. 41.
    Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer Academic Publishers, Dordrecht (1991). doi: 10.1007/978-94-011-3436-1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations