Improving the Metabolism and Sustainability of Buildings and Cities Through Integrated Rooftop Greenhouses (i-RTG)

Part of the Sustainable Development and Biodiversity book series (SDEB, volume 18)


Food security in cities is an increasing concern due to the impact of climate change and the concentration of world population in cities. Urban agriculture (UA) aims at enhancing food production in urban areas, providing potential environmental advantages by reducing food transport, packaging and waste generation. Among UA alternatives, rooftop greenhouses (RTGs) are greenhouses built on top of urban roofs, in which mainly soil-less agriculture systems are used to produce food. When RTGs are integrated into the metabolism of their buildings, they exchange CO2, energy and water to improve their performance. This alternative is called integrated RTG (i-RTG). This chapter analyses the use of i-RTGs to improve buildings and cities’ metabolism and its particular application in the area of Barcelona. This analysis aims to define a new agricultural system from a technological and sustainability approach focusing on Mediterranean cities. Our research is based on the development and results of the Fertilecity project. A particular experimental analysis was conducted at ICTA’s i-RTG lab located near Barcelona. The main factors of interest are architectural and engineering requirements, urban integration, CO2 emissions management, energy consumption, food production, social integration and rainwater harvesting. This analysis has used different methods such as life cycle assessment (LCA), life cycle costing (LCC) and semi-quantitative assessments. Multiple integrated results were obtained both at the building and city scale. For example, we proved that the i-RTG and its flow exchanges with the building could help to save heating energy, waste generation, water consumption and CO2 emissions.


Food security Urban agriculture LCA Building metabolism Circular economy Industrial ecology 



The authors thank the Spanish Ministry of Economy and Competitiveness for awarding and funding the Fertilecity project (CTM2013-47067-C2-1-R) and (CTM2016-75772-C3-1-2-3-R) (MINECO/FEDER,UE). The authors are also grateful for the research fellowships awarded to D. Sanjuan-Delmás, P. Llorach-Massana, and M. Ercilla-Montserrat by Agaur—Generalitat de Catalunya (FI-DGR 2014, 2015, 2016); A. Petit-Boix and E. Sanyé-Mengual, by the Spanish Ministry of Education (FPU13/01273; AP2010-4044), and A. Nadal, by the National Council for Science and Technology of Mexico (CONACYT) and the Council for Science, Innovation and Technology, State of Yucatan (CONCIYTEY). Thanks to the Catalan Government for the SGR funds (2014 SGR 1412). We acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness, through the ‘María de Maeztu’ programme for Units of Excellence in R&D (MDM-2015-0552).


  1. ACGIH (1991) Documentation of the threshold limit values and biological exposure indices, 6th edn. Acgih PublicationsGoogle Scholar
  2. Ackerman K (2011) The potential for urban agriculture in New York City: growing capacity, food security, and green infraestructure. Urban Design Lab, Earth Institute, Columbia University, New YorkGoogle Scholar
  3. Ajuntament de Barcelona (2016) Statistical yearbook of Barcelona city. Year 2016 > Demography and population.
  4. Architects HA (2011) Final Project documents of ICTA
  5. Arredondo D (2013) Agricultura en la Ciudad: de la Utopía a la Conciencia de Lugar, Granada, Universidad de GranadaGoogle Scholar
  6. BOE (2004) REAL DECRETO 2267/2004, de 3 de diciembre, por el que se aprueba el Reglamento de seguridad contra incendios en los establecimientos industriales. Boletín Of del Estado 303:41194–41255Google Scholar
  7. BOE (2006) REAL DECRETO 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación. Boletín Of del Estado 74:11816–11831Google Scholar
  8. BOE (2010) Ley 3/2010, de 18 de febrero, de prevención y seguridad en materia de incendios en establecimientos, actividades, infraestructuras y edificios. Boletín Of del Estado 89:32918–32943Google Scholar
  9. Cerón-Palma I, Sanyé-Mengual E, Oliver-Solà J et al (2012) Barriers and Opportunities Regarding the Implementation of Rooftop Eco. Greenhouses (RTEG) in Mediterranean Cities of Europe. J Urban Technol 19:87–103. Scholar
  10. Chalana M (2014) Chandigarh: City and periphery. J Plan Hist 14:62–84CrossRefGoogle Scholar
  11. Contreras E, Castillo I (2015) Guia de terrats vius i cobertes verdes. Ajuntament de Barcelona.
  12. da Cunha JMP, Rodríguez-Vignoli J (2009) Crecimiento urbano y movilidad en América Latina. Rev Latinoam Población 3:27–64Google Scholar
  13. Deely SC, Dodman DC, Hardoy JC, Johnson CC (2010) World disasters report 2010: Focus on urban riskGoogle Scholar
  14. dos Santos MJPL (2016) Smart cities and urban areas—Aquaponics as innovative urban agriculture. Urban For Urban Green 20:402–406. Scholar
  15. European Commission (2010) Making our cities attractive and sustainable—How the EU contributes to improving the urban environment. Publications Office of the European Union, LuxemburgGoogle Scholar
  16. Fraunhofer UMSICHT (2011) Harvesting on urban rooftops—demo center at Fraunhofer inHaus. Fraunhofer institute for Environmental, Safety and energy technology UMSICHT, OberhausenGoogle Scholar
  17. Grewal SS, Grewal PS (2012) Can cities become self-reliant in food? Cities 29:1–11CrossRefGoogle Scholar
  18. ISO 14040:2006 Environmental management—life cycle assessment—principles and frameworkGoogle Scholar
  19. ISO 14044:2006 Environmental management—life cycle assessment—requirements and guidelinesGoogle Scholar
  20. ISO 15686-5:2008 Buildings and constructed assets—sevice-life planning—part 5: life-cycle costingGoogle Scholar
  21. Janick J (2002) Ancient Egyptian agriculture and the origins of horticulture. In: Acta horticulturae, pp 23–39Google Scholar
  22. Joffe H, Smith N (2016) City dweller aspirations for cities of the future: how do environmental and personal wellbeing feature? Cities 59:102–112. Scholar
  23. Lakkireddy KKR (2012) Role of hydroponics and aeroponics in soilless culture in commercial food production. Res Rev J Agric Sci Technol 1:26–35Google Scholar
  24. Lufa Farm (2017) Our vision is a city of rooftop farms.
  25. Lugaric L, Krajcar S (2016) Transforming cities towards sustainable low-carbon energy systems using emergy synthesis for support in decision making. Energy Policy 98:471–482. Scholar
  26. McClintock N, Cooper J, Khandeshi S (2013) Assessing the potential contribution of vacant land to urban vegetable production and consumption in Oakland, California. Landsc Urban Plan 111:46–58. Scholar
  27. McKay G (2011) Radical gardening: politics, idealism and rebellion in the garden. Frances Lincoln, LondonGoogle Scholar
  28. MercaBarna (2017) Database of products’ trade: fruits & vegetables—year 2016 [online]. Accessed 20 Feb 2017
  29. Mitchell RG, Spliethoff HM, Ribaudo LN et al (2014) Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions. Environ Pollut 187:162–169. Scholar
  30. Montero J, Antón A, Torrellas M et al (2011) EUPHOROS Deliverable 5. Report on environmental and economic profile of present greenhouse production systems in Europe. European Commission FP7 RDT Project Euphoros (Reducing the need for external inputs in high value protected horticultural and ornament)Google Scholar
  31. Morán A, Aja A (2011) Historia de los huertos urbanos. I Congreso Estatal de Agricultura Ecológica Urbana y PeriurbanaGoogle Scholar
  32. Mortensen LM (1987) Review: CO2 enrichment in greenhouses. Crop responses. Sci Hortic (Amsterdam) 33:1–25. Scholar
  33. Nadal Fuentes A (2015) Agricultura urbana en el marco de un urbanismo sostenible. Temes de disseny 31:92–103Google Scholar
  34. Nadal A, Llorach-Massana P, Cuerva E et al (2017) Building-integrated rooftop greenhouses: an energy and environmental assessment in the mediterranean context. Appl Energy 187:338–351. Scholar
  35. Pons O, Nadal A, Sanyé-Mengual E et al (2015) Roofs of the future: rooftop greenhouses to improve buildings metabolism. Procedia Eng 123:441–448. Scholar
  36. Sanyé-Mengual E, Anguelovski I, Oliver-Solà J et al (2014a) When the perception and development of urban rooftop farming depend on how urban agriculture is defined: examining diverging stakeholders’ experiences and views in Barcelona, Spain. In: Roggema R, Keefe G (eds) “Finding spaces for productive spaces” 6th AESOP sustainable food planning conference. VHL University of Applied Sciences, Velp, pp 491–504Google Scholar
  37. Sanyé-Mengual E, Llorach-Massana P, Sanjuan-Delmás D et al (2014b) The ICTA-ICP rooftop greenhouse lab (RTG-Lab): closing metabolic flows (energy, water, CO2) through integrated rooftop greenhouses. In: “Finding spaces for productive cities,” 6th AESOP sustainable food planning conference, pp 692–701Google Scholar
  38. Sanyé-Mengual E, Cerón-Palma I, Oliver-Solà J et al (2015a) Integrating horticulture into cities: a guide for assessing the implementation potential of rooftop greenhouses (RTGs) in industrial and logistics parks. J Urban Technol 22:87–111CrossRefGoogle Scholar
  39. Sanyé-Mengual E, Oliver-Solà J, Montero JI, Rieradevall J (2015b) An environmental and economic life cycle assessment of rooftop greenhouse (RTG) implementation in Barcelona, Spain. Assessing new forms of urban agriculture from the greenhouse structure to the final product level. Int J Life Cycle Assess 20:350–366. Scholar
  40. Sanyé-Mengual E, Anguelovski I, Oliver-Solà J et al (2016) Resolving differing stakeholder perceptions of urban rooftop farming in Mediterranean cities: promoting food production as a driver for innovative forms of urban agriculture. Agric Human Values 33:101–120. Scholar
  41. Säumel I, Kotsyuk I, Hölscher M et al (2012) How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ Pollut 124–132CrossRefPubMedGoogle Scholar
  42. Seppanen OA, Fisk WJ, Mendell MJ (1999) Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 9:226–252. Scholar
  43. Specht K, Siebert R, Thomaier S (2016) Perception and acceptance of agricultural production in and on urban buildings (ZFarming): a qualitative study from Berlin, Germany. Agric Hum Values 33:753–769. Scholar
  44. Spudic S (2007) The new victory garden. Royal Horticultural Society Dissertation, Wisley, Diploma in Practical HorticultureGoogle Scholar
  45. The Vinegar Factory (2017) Eli’s Vinegar factory.
  46. United Nations (2014) World’s population increasingly urban with more than half living in urban areas. Dep Econ Soc Aff 2014–2016Google Scholar
  47. Yelle S, Beeson RC, Trudel MJ, Gosselin A (1990) Duration of CO2 enrichment influences growth, yield, and gas exchange of two tomato species. J Am Soc Hortic Sci 115:52–57Google Scholar
  48. Zaar M-H (2011) Agricultura urbana: algunas reflexiones sobre su origen e importancia actualGoogle Scholar
  49. Zezza A, Tasciotti L (2010) Urban agriculture, poverty, and food security: empirical evidence from a sample of developing countries. Food Policy 35:265–273. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sostenipra Research Group (SGR 01412)Institute of Environmental Sciences and Technology (MDM-2015-0552), Z Building, Universitat Autònoma de Barcelona (UAB)Bellaterra, BarcelonaSpain
  2. 2.Research Centre in the Urban Environment for Agriculture and Biodiversity (ResCUE-AB), Alma Mater Studiorum University of BolognaBolognaItaly
  3. 3.Department of Construction Engineering, School of Industrial Engineering (ETSEIB)Universitat Politècnica de Catalunya (UPC-Barcelona Tech)BarcelonaSpain
  4. 4.Department of Civil and Environmental Engineering, School of Civil Engineering (ETSECCPB)Sustainability Institut (IS.UPC). Universitat Politècnica de Catalunya (UPC-Barcelona Tech)BarcelonaSpain
  5. 5.Institute for Sustainability Science and Technology (IS.UPC), Universitat Politècnica de Catalunya (UPC-BarcelonaTech)BarcelonaSpain
  6. 6.Institute of Food and Agricultural Research (IRTA)BarcelonaSpain
  7. 7.Department of ChemicalBilogical and Environmental Engineering, Universitat Autònoma de Barcelona (UAB)Bellaterra, BarcelonaSpain
  8. 8.Department of Architectural Technology, School of Architecture (ETSAB)Universitat Politècnica de Catalunya (UPC-Barcelona Tech)BarcelonaSpain

Personalised recommendations