Advertisement

Towards a Semantic Search Engine for Scientific Articles

  • Bastien Latard
  • Jonathan Weber
  • Germain Forestier
  • Michel Hassenforder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10450)

Abstract

Because of the data deluge in scientific publication, finding relevant information is getting harder and harder for researchers and readers. Building an enhanced scientific search engine by taking semantic relations into account poses a great challenge. As a starting point, semantic relations between keywords from scientific articles could be extracted in order to classify articles. This might help later in the process of browsing and searching for content in a meaningful scientific way. Indeed, by connecting keywords, the context of the article can be extracted. This paper aims to provide ideas to build such a smart search engine and describes the initial contributions towards achieving such an ambitious goal.

References

  1. 1.
    (Editorial), N.: Gold in the text? Nature 483(7388), 124 (2012)Google Scholar
  2. 2.
    Effendy, S., Yap, R.H.C.: The problem of categorizing conferences in computer science. In: Fuhr, N., Kovács, L., Risse, T., Nejdl, W. (eds.) TPDL 2016. LNCS, vol. 9819, pp. 447–450. Springer, Cham (2016). doi: 10.1007/978-3-319-43997-6_41 CrossRefGoogle Scholar
  3. 3.
    Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., Collins, M.: Globally normalized transition-based neural networks. In: ACL (2016)Google Scholar
  5. 5.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: ACL, pp. 55–60 (2014)Google Scholar
  6. 6.
    Franco-Salvador, M., Cruz, F.L., Troyano, J.A., Rosso, P.: Cross-domain polarity classification using a knowledge-enhanced meta-classifier. Knowl. Based Syst. 86, 46–56 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bastien Latard
    • 1
    • 2
  • Jonathan Weber
    • 1
  • Germain Forestier
    • 1
  • Michel Hassenforder
    • 1
  1. 1.MIPSUniversity of Haute-AlsaceMulhouseFrance
  2. 2.MDPI AGBaselSwitzerland

Personalised recommendations