A Complete Year of User Retrieval Sessions in a Social Sciences Academic Search Engine

  • Philipp MayrEmail author
  • Ameni Kacem
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10450)


In this paper, we present an open data set extracted from the transaction log of the social sciences academic search engine sowiport. The data set includes a filtered set of 484,449 retrieval sessions which have been carried out by sowiport users in the period from April 2014 to April 2015. We propose a description of interactions performed by the academic search engine users that can be used in different applications such as result ranking improvement, user modeling, query reformulation analysis, search pattern recognition.


Whole session retrieval Information behavior Session log analysis User session data Social sciences users 



This work was funded by Deutsche Forschungsgemeinschaft (DFG), grant no. MA 3964/5-1; the AMUR project at GESIS together with the working group of Norbert Fuhr. The AMUR project aims at improving the support of interactive retrieval sessions following two major goals: improving user guidance and system tuning.


  1. 1.
    Carevic, Z., Lusky, M., van Hoek, W., Mayr, P.: Investigating exploratory search activities based on the stratagem level in digital libraries. Int. J. Dig. Libr. (2017).
  2. 2.
    Hienert, D., Sawitzki, F., Mayr, P.: Digital Library Research in Action Supporting Information Retrieval in Sowiport. D-Lib Mag. 21(3/4) (2015). doi: 10.1045/march2015-hienert,
  3. 3.
    Fuhr, N., et al.: Evaluation of digital libraries. Int. J. Dig. Libr. 8(1), 21–38 (2007)CrossRefGoogle Scholar
  4. 4.
    Kacem, A., Boughanem, M., Faiz, R.: Emphasizing temporal-based user profile modeling in the context of session search. In: SAC, pp. 925–930. ACM (2017)Google Scholar
  5. 5.
    Kelly, D., Dumais, S.T., Pedersen, J.O.: Evaluation challenges and directions for information-seeking support systems. IEEE Comput. 42(3), 60–66 (2009)CrossRefGoogle Scholar
  6. 6.
    Carevic, Z., Mayr, P.: Survey on high-level search activities based on the stratagem level in digital libraries. In: Fuhr, N., Kovács, L., Risse, T., Nejdl, W. (eds.) TPDL 2016. LNCS, vol. 9819, pp. 54–66. Springer, Cham (2016). doi: 10.1007/978-3-319-43997-6_5 CrossRefGoogle Scholar
  7. 7.
    Hienert, D., Mutschke, P.: A usefulness-based approach for measuring the local and global effect of IIR services. In: Proceedings of CHIIR 2016, pp. 153–162. ACM (2016)Google Scholar
  8. 8.
    Akbar, M., Shaffer, C.A., Fox, E.A.: Deduced social networks for an educational digital library. In: Proceedings of JCDL 2012, pp. 43–46. ACM (2012)Google Scholar
  9. 9.
    Ellis, D.: A behavioural approach to information retrieval system design. J. Documentation 45(3), 171–212 (1989)CrossRefGoogle Scholar
  10. 10.
    Peters, T.A.: The history and development of transaction log analysis. Libr. Hi Tech. 11(2), 41–66 (1993)CrossRefGoogle Scholar
  11. 11.
    Jones, S., Cunningham, S.J., McNab, R.: An Analysis of Usage of a Digital Library. In: Nikolaou, C., Stephanidis, C. (eds.) ECDL 1998. LNCS, vol. 1513, pp. 261–277. Springer, Heidelberg (1998). doi: 10.1007/3-540-49653-X_16 CrossRefGoogle Scholar
  12. 12.
    Mayr, P.: Sowiport User Search Sessions Data Set (SUSS) (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.GESIS - Leibniz Institute for Social SciencesCologneGermany

Personalised recommendations