Advertisement

Extracting Event-Centric Document Collections from Large-Scale Web Archives

  • Gerhard GossenEmail author
  • Elena Demidova
  • Thomas Risse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10450)

Abstract

Web archives are typically very broad in scope and extremely large in scale. This makes data analysis appear daunting, especially for non-computer scientists. These collections constitute an increasingly important source for researchers in the social sciences, the historical sciences and journalists interested in studying past events. However, there are currently no access methods that help users to efficiently access information, in particular about specific events, beyond the retrieval of individual disconnected documents. Therefore we propose a novel method to extract event-centric document collections from large scale Web archives. This method relies on a specialized focused extraction algorithm. Our experiments on the German Web archive (covering a time period of 19 years) demonstrate that our method enables the extraction of event-centric collections for different event types.

Notes

Acknowledgments

This work was partially funded by the ERC under ALEXANDRIA (ERC 339233), H2020 under SoBigData (RIA 654024) and BMBF under Data4UrbanMobility (02K15A040).

References

  1. 1.
    Aggarwal, C., Al-Garawi, F., Yu, P.S.: Intelligent crawling on the world wide web with arbitrary predicates. In: World Wide Web Conference, pp. 96–105 (2001)Google Scholar
  2. 2.
    Berberich, K., Bedathur, S.: Temporal diversification of search results. In: Workshop on Time-aware Information Access (TAIA 2013) (2013)Google Scholar
  3. 3.
    Bergmark, D., Lagoze, C., Sbityakov, A.: Focused crawls, tunneling, and digital libraries. In: Agosti, M., Thanos, C. (eds.) ECDL 2002. LNCS, vol. 2458, pp. 91–106. Springer, Heidelberg (2002). doi: 10.1007/3-540-45747-X_7 CrossRefGoogle Scholar
  4. 4.
    Chakrabarti, S., van den Berg, M., Dom, B.: Focused crawling: a new approach to topic-specific web resource discovery. Comput. Netw. 31(11–16) (1999)Google Scholar
  5. 5.
    Costa, M., Couto, F., Silva, M.: Learning temporal-dependent ranking models. In: SIGIR 2014 (2014)Google Scholar
  6. 6.
    Costa, M., Gomes, D., Silva, M.J.: The evolution of web archiving. IJDL (2016)Google Scholar
  7. 7.
    Diligenti, M., Coetzee, F., Lawrence, S., Giles, C.L., Gori, M.: Focused crawling using context graphs. In: VLDB (2000)Google Scholar
  8. 8.
    Dong, A., Chang, Y., Zheng, Z., Mishne, G., Bai, J., Zhang, R., Buchner, K., Liao, C., Diaz, F.: Towards recency ranking in web search. In: WSDM 2010 (2010)Google Scholar
  9. 9.
    Dong, H., Hussain, F.K.: SOF: a semi-supervised ontology-learning-based focused crawler. Concurrency Computat. Prac. Experience 25(12) (2013)Google Scholar
  10. 10.
    Ehrig, M., Maedche, A.: Ontology-focused crawling of web documents. In: ACM SAC (2003)Google Scholar
  11. 11.
    Farag, M.M.G., Lee, S., Fox, E.A.: Focused crawler for events. IJDL (2017)Google Scholar
  12. 12.
    Gossen, G., Demidova, E., Risse, T.: iCrawl: Improving the freshness of web collections by integrating social web and focused web crawling. In: JCDL 2015 (2015)Google Scholar
  13. 13.
    Gossen, G., Demidova, E., Risse, T.: The iCrawl Wizard – supporting interactive focused crawl specification. In: ECIR 2015 (2015)Google Scholar
  14. 14.
    Gossen, G., Demidova, E., Risse, T.: Analyzing web archives through topic and event focused sub-collections. In: WebSci 2016. pp. 291–295, May 2016Google Scholar
  15. 15.
    Heydon, A., Najork, M.: Mercator: a scalable, extensible web crawler. World Wide Web 2(4), 219–229 (1999)CrossRefGoogle Scholar
  16. 16.
    Jackson, A., Lin, J., Milligan, I., Ruest, N.: Desiderata for exploratory search interfaces to web archives in support of scholarly activities. In: JCDL2016 (2016)Google Scholar
  17. 17.
    Jiang, J., Song, X., Yu, N., Lin, C.Y.: Focus: Learning to crawl web forums. IEEE TKDE 25(6) (2013)Google Scholar
  18. 18.
    Kanhabua, N., Nørvåg, K.: A comparison of time-aware ranking methods. In: SIGIR 2011 (2011)Google Scholar
  19. 19.
    Laranjeira, B., Moreira, V., Villavicencio, A., Ramisch, C., Finatto, M.J.: Comparing the quality of focused crawlers and of the translation resources obtained from them. In: LREC 2014 (2014)Google Scholar
  20. 20.
    Mohr, G., Kimpton, M., Stack, M., Ranitovic, I.: Introduction to Heritrix, an archival quality web crawler. In: 4th International Web Archiving Workshop (2004)Google Scholar
  21. 21.
    Nguyen, T.N., Kanhabua, N., Niederée, C., Zhu, X.: A time-aware random walk model for finding important documents in web archives. In: SIGIR 2015 (2015)Google Scholar
  22. 22.
    Pant, G., Srinivasan, P.: Learning to crawl: Comparing classification schemes. ACM Trans. Inf. Syst. 23(4) (2005)Google Scholar
  23. 23.
    Pant, G., Srinivasan, P., Menczer, F.: Crawling the web. In: Web Dynamics (2004)Google Scholar
  24. 24.
    Pereira, P., Macedo, J., Craveiro, O., Madeira, H.: Time-aware focused web crawling. In: Rijke, M., Kenter, T., Vries, A.P., Zhai, C.X., Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 534–539. Springer, Cham (2014). doi: 10.1007/978-3-319-06028-6_53 CrossRefGoogle Scholar
  25. 25.
    Qin, J., Zhou, Y., Chau, M.: Building domain-specific web collections for scientific digital libraries. In: JCDL 2004 (2004)Google Scholar
  26. 26.
    Risse, T., Demidova, E., Gossen, G.: What do you want to collect from the web? In: Proceedings of the Building Web Observatories Workshop (BWOW) 2014 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.L3S Research CenterLeibniz UniversitätHanoverGermany
  2. 2.University Library J.C. SenckenbergFrankfurtGermany

Personalised recommendations