Integration of Eye-Tracking Based Studies into e-Commerce Websites Evaluation Process with eQual and TOPSIS Methods

  • Jarosław WątróbskiEmail author
  • Jarosław Jankowski
  • Artur Karczmarczyk
  • Paweł Ziemba
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 300)


The evaluation of the e-commerce websites’ quality, usability and user experience is an important research task. Various survey-based evaluation methods are available, eQual being one of them. However, these methods are not free of disadvantages. In this paper, a novel approach is presented, where a single usability evaluation model is created on the basis of the eQual survey criteria and the perceptual evaluation data from eye tracking devices, thus extending the statistical survey model with objective gaze measurements and Multi-Criteria Decision Analysis (MCDA) methodology foundations. The combined data is processed with the crisp and fuzzy variants of the TOPSIS method to evaluate the websites. An empirical verification is performed and the results are presented. The results showed the benefits of the author’s proposed approach as well as the wide possibilities of interpretation of the obtained solutions.


TOPSIS eQual Eye tracking Websites quality evaluation 


  1. 1.
    Information economy report 2015 (2015).
  2. 2.
  3. 3.
    Alexa’s top e-commerce websites (2016).;3/Business/E-Commerce
  4. 4.
  5. 5.
    Ahn, T., Ryu, S., Han, I.: The impact of the online and offline features on the user acceptance of internet shopping malls. Electron. Commerce Res. Appl. 3(4), 405–420 (2005)CrossRefGoogle Scholar
  6. 6.
    Akinci, S., Atilgan-Inan, E., Aksoy, S.: Re-assessment of ES-qual and E-RecS-qual in a pure service setting. J. Bus. Res. 63(3), 232–240 (2010)CrossRefGoogle Scholar
  7. 7.
    Albayrak, D., Cagiltay, K.: Analyzing Turkish e-government websites by eye tracking. In: 2013 Joint Conference of the 23rd International Workshop on Software Measurement and the 2013 Eighth International Conference on Software Process and Product Measurement (IWSM-MENSURA), pp. 225–230. IEEE (2013)Google Scholar
  8. 8.
    Barnes, S., Vidgen, R.: Webqual: an exploration of website quality. In: ECIS 2000 Proceedings, p. 74 (2000)Google Scholar
  9. 9.
    Barnes, S.J., Vidgen, R.: An evaluation of cyber-bookshops: the webqual method. Int. J. Electron. Commerce 6(1), 11–30 (2001)Google Scholar
  10. 10.
    Barnes, S.J., Vidgen, R.: Measuring web site quality improvements: a case study of the forum on strategic management knowledge exchange. Ind. Manage. Data Syst. 103(5), 297–309 (2003)CrossRefGoogle Scholar
  11. 11.
    Barnes, S.J., Vidgen, R.: The equal approach to the assessment of e-commerce quality: a longitudinal study of internet bookstories (2005)Google Scholar
  12. 12.
    Barnes, S.J., Vidgen, R.T.: Data triangulation in action: using comment analysis to refine web quality metrics. In: ECIS 2005 Proceedings, p. 24 (2005)Google Scholar
  13. 13.
    Barnes, S.J., Vidgen, R.T.: Data triangulation and web quality metrics: a case study in e-government. Inf. Manage. 43(6), 767–777 (2006)CrossRefGoogle Scholar
  14. 14.
    Bilsel, R.U., Büyüközkan, G., Ruan, D.: A fuzzy preference-ranking model for a quality evaluation of hospital web sites. Int. J. Intell. Syst. 21(11), 1181–1197 (2006)CrossRefGoogle Scholar
  15. 15.
    Boulding, W., Kalra, A., Staelin, R., Zeithaml, V.A.: A dynamic process model of service quality: from expectations to behavioral intentions. J. Market. Res. 30(1), 7 (1993)CrossRefGoogle Scholar
  16. 16.
    Bouyssou, D., Jacquet-Lagrèze, E., Perny, P., Slowiński, R., Vanderpooten, D., Vincke, P.: Aiding Decisions with Multiple Criteria: Essays in Honor of Bernard Roy. International Series in Operations Research & Management Science, vol. 44. Springer, New York (2002). doi: 10.1007/978-1-4615-0843-4 Google Scholar
  17. 17.
    Brans, J.P., Mareschal, B.: Promethee methods. In: Figueira, J., Greco, S., Ehrogott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science, vol. 78. Springer, New York (2005). doi: 10.1007/0-387-23081-5_5
  18. 18.
    Chang Lee, K., Wook Chae, S.: Exploring the effect of the human brand on consumers’ decision quality in online shopping: an eye-tracking approach. Online Inf. Rev. 37(1), 83–100 (2013)CrossRefGoogle Scholar
  19. 19.
    Chen, C.T.: Extensions of the topsis for group decision-making under fuzzy environment. Fuzzy Sets Syst. 114(1), 1–9 (2000)CrossRefGoogle Scholar
  20. 20.
    Chen, L., Pu, P.: Eye-tracking study of user behavior in recommender interfaces. In: Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 375–380. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13470-8_35 CrossRefGoogle Scholar
  21. 21.
    Cowen, L., Ball, L.J., Delin, J.: An eye movement analysis of web page usability. In: Faulkner, X., Finlay, J., Détienne, F. (eds.) People and Computers XVI - Memorable Yet Invisible. Springer, London (2002). doi: 10.1007/978-1-4471-0105-5_19
  22. 22.
    Cunliffe, D.: Developing usable web sites-a review and model. Internet Res. 10(4), 295–308 (2000)CrossRefGoogle Scholar
  23. 23.
    Del Vasto-Terrientes, L., Valls, A., Slowinski, R., Zielniewicz, P.: Electre-III-H: an outranking-based decision aiding method for hierarchically structured criteria. Expert Syst. Appl. 42(11), 4910–4926 (2015)CrossRefGoogle Scholar
  24. 24.
    Elling, S., Lentz, L., Jong, M.: Website evaluation questionnaire: development of a research-based tool for evaluating informational websites. In: Wimmer, M.A., Scholl, J., Grönlund, Å. (eds.) EGOV 2007. LNCS, vol. 4656, pp. 293–304. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74444-3_25 CrossRefGoogle Scholar
  25. 25.
    Grigera, J., Garrido, A., Panach, J.I., Distante, D., Rossi, G.: Assessing refactorings for usability in e-commerce applications. Empir. Softw. Eng. 21(3), 1224–1271 (2016).
  26. 26.
    Guitouni, A., Martel, J.M.: Tentative guidelines to help choosing an appropriate MCDA method. Eur. J. Oper. Res. 109(2), 501–521 (1998)CrossRefGoogle Scholar
  27. 27.
    Guitouni, A., Martel, J.M., Vincke, P., North, P.: A framework to choose a discrete multicriterion aggregation procedure. Defence Research Establishment Valcatier (DREV) (1998)Google Scholar
  28. 28.
    Hernández-Méndez, J., Muñoz-Leiva, F.: What type of online advertising is most effective for etourism 2.0? An eye tracking study based on the characteristics of tourists. Comput. Hum. Behav. 50, 618–625 (2015)CrossRefGoogle Scholar
  29. 29.
    Huang, J., Jiang, X., Tang, Q.: An e-commerce performance assessment model: its development and an initial test on e-commerce applications in the retail sector of China. Inf. Manage. 46(2), 100–108 (2009)CrossRefGoogle Scholar
  30. 30.
    Hwang, C.L., Lai, Y.J., Liu, T.Y.: A new approach for multiple objective decision making. Comput. Oper. Res. 20(8), 889–899 (1993)CrossRefGoogle Scholar
  31. 31.
    Kabir, G., Hasin, M.: Comparative analysis of topsis and fuzzy topsis for the evaluation of travel website service quality. Int. J. Qual. Res. 6(3), 169–185 (2012)Google Scholar
  32. 32.
    Kauffman, A., Gupta, M.M.: Introduction to Fuzzy Arithmetic, Theory and Application (1991)Google Scholar
  33. 33.
    Kaya, T.: Multi-attribute evaluation of website quality in e-business using an integrated fuzzy ahptopsis methodology. Int. J. Comput. Intell. Syst. 3(3), 301–314 (2010)CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Kemp, S.: Digital in 2017 global overview (2017). https://www.slideshare.netwearesocialsgdigital-in-2017-global-overview
  36. 36.
    Khodambashi, S., Gilstad, H., Nytrø, Ø.: Usability evaluation of clinical guidelines on the web using eye-tracker. Stud. Health Technol. Inform. 228, 95 (2016)Google Scholar
  37. 37.
    Kruger, R.M., Gelderblom, H., Beukes, W.: The value of comparative usability and UX evaluation for e-commerce organisations (2016)Google Scholar
  38. 38.
    Lee, Y., Kozar, K.A.: Investigating the effect of website quality on e-business success: an analytic hierarchy process (AHP) approach. Decis. Support Syst. 42(3), 1383–1401 (2006)CrossRefGoogle Scholar
  39. 39.
    Lin, H.F.: An application of fuzzy AHP for evaluating course website quality. Comput. Educ. 54(4), 877–888 (2010)CrossRefGoogle Scholar
  40. 40.
    Lindner, M.: Online sales will reach $523 billion by 2020 in the U.S., January 2016.
  41. 41.
    Matell, M.S., Jacoby, J.: Is there an optimal number of alternatives for likert scale items? Study i: reliability and validity. Educ. Psychol. Measure. 31(3), 657–674 (1971)CrossRefGoogle Scholar
  42. 42.
    McSpadden, K.: You now have a shorter attention span than a goldfish. Time Online Magaz. (2015). Accessed 7 May 2016.
  43. 43.
    Menon, R.V., Sigurdsson, V., Larsen, N.M., Fagerstrøm, A., Foxall, G.R.: Consumer attention to price in social commerce: eye tracking patterns in retail clothing. J. Bus. Res. 69(11), 5008–5013 (2016)CrossRefGoogle Scholar
  44. 44.
    Milani, A., Shanian, A., Madoliat, R., Nemes, J.: The effect of normalization norms in multiple attribute decision making models: a case study in gear material selection. Struct. Multidisc. Optim. 29(4), 312–318 (2005)CrossRefGoogle Scholar
  45. 45.
    Min, H.: International supplier selection: a multi-attribute utility approach. Int. J. Phys. Distrib. Logist. Manage. 24(5), 24–33 (1994)CrossRefGoogle Scholar
  46. 46.
    Nielsen, J.: Usability Engineering. Elsevier, Amsterdam (1994)Google Scholar
  47. 47.
    Olsson, M.: Build a Profitable Online Business: The No-Nonsense Guide, 1st edn. Apress, Berkely (2013)Google Scholar
  48. 48.
    Pan, B., Zhang, L.: An eyetracking study on online hotel decision making: the effects of images and number of options (2016)Google Scholar
  49. 49.
    Parasuraman, A., Zeithaml, V.A., Malhotra, A.: Es-qual a multiple-item scale for assessing electronic service quality. J. Serv. Res. 7(3), 213–233 (2005)CrossRefGoogle Scholar
  50. 50.
    Parasuraman, A., Zeithaml, V.A., Berry, L.L.: Servqual: a multiple-item scale for measuring consumer perc. J. Retail. 64(1), 12 (1988)Google Scholar
  51. 51.
    Paul, R.: Just how big is the ecommerce market? You will never guess!, June 2015.
  52. 52.
    Roth, S.P., Tuch, A.N., Mekler, E.D., Bargas-Avila, J.A., Opwis, K.: Location matters, especially for non-salient features-an eye-tracking study on the effects of web object placement on different types of websites. Int. J. Hum. Comput. Stud. 71(3), 228–235 (2013)CrossRefGoogle Scholar
  53. 53.
    Roy, B.: Multicriteria Methodology for Decision Aiding, pp. 51–68. Springer Science & Business Media, November 11, 2013Google Scholar
  54. 54.
    Seixedo, C., Tereso, A.P.: A multicriteria decision aid software application for selecting MCDA software using AHP. In: 2nd International Conference on Engineering Optimization (EngOpt2010) (2010)Google Scholar
  55. 55.
    Shih, H.S., Shyur, H.J., Lee, E.S.: An extension of topsis for group decision making. Math. Comput. Model. 45(7), 801–813 (2007)CrossRefGoogle Scholar
  56. 56.
    Sohaib, O., Kang, K.: Assessing web content accessibility of e-commerce websites for people with disabilities (2016)Google Scholar
  57. 57.
    Štrach, P., Slivkin, N.: Adaptation needed: eye-tracking study of cross-cultural differences in perception of b2b websites (2017)Google Scholar
  58. 58.
    Strzelecki, A., Furmankiewicz, M., Ziuziański, P.: The use of management dashboard in monitoring the efficiency of the internet advertising campaigns illustrated on the example of google analytics. Studia Ekonomiczne 296, 136–150 (2016)Google Scholar
  59. 59.
    Sun, C.C., Lin, G.T.: Using fuzzy topsis method for evaluating the competitive advantages of shopping websites. Expert Syst. Appl. 36(9), 11764–11771 (2009)CrossRefGoogle Scholar
  60. 60.
    Treu, S.: Need for multi-aspect measures to support evaluation of complex human-computer interfaces. In: Fourth Annual Symposium on Human Interaction with Complex Systems, Proceedings, pp. 182–191. IEEE (1998)Google Scholar
  61. 61.
    Twidale, M.B., Nichols, D.M.: Exploring usability discussions in open source development. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS 2005), p. 198c. IEEE (2005)Google Scholar
  62. 62.
    Wang, J.W., Cheng, C.H., Huang, K.C.: Fuzzy hierarchical topsis for supplier selection. Appl. Soft Comput. 9(1), 377–386 (2009)CrossRefGoogle Scholar
  63. 63.
    Wątróbski, J., Ziemba, P., Jankowski, J., Wolski, W.: Pequal-e-commerce websites quality evaluation methodology. In: 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1317–1327. IEEE (2016)Google Scholar
  64. 64.
    Weatherhead, R.: Say it quick, say it well-the attention span of a modern internet consumer. Guardian Online 19 (2012).
  65. 65.
    Webb, H., Webb, L.: Business to consumer electronic commerce website quality: integrating information and service dimensions. In: AMCIS 2001 Proceedings, p. 111 (2001)Google Scholar
  66. 66.
    Webb, H.W., Webb, L.A.: Sitequal: an integrated measure of web site quality. J. Enterpr. Inf. Manage. 17(6), 430–440 (2004)CrossRefGoogle Scholar
  67. 67.
    Yang, Z., Cai, S., Zhou, Z., Zhou, N.: Development and validation of an instrument to measure user perceived service quality of information presenting web portals. Inf. Manage. 42(4), 575–589 (2005)CrossRefGoogle Scholar
  68. 68.
    Yuan, X., Guo, M., Ren, F., Peng, F.: Usability analysis of online bank login interface based on eye tracking experiment. Sensors Transducers 165(2), 203 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jarosław Wątróbski
    • 1
    Email author
  • Jarosław Jankowski
    • 1
  • Artur Karczmarczyk
    • 1
  • Paweł Ziemba
    • 2
  1. 1.West Pomeranian University of Technology in SzczecinSzczecinPoland
  2. 2.Department of TechnologyThe Jacob of Paradies UniversityGorzów WielkopolskiPoland

Personalised recommendations