A Web-Based Approach for Analyzing Microorganism Sequences

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 742)

Abstract

In biology, a mutation is a change in the nucleotide sequence of the genome of a microorganisms (e.g., virus, bacteria). Mutations play an important role in biological processes of microorganisms such as drug resistance. Analyzing these mutations becomes a challenge because microorganisms are described by a big amount of data that must be processed based on reference microorganisms data. Nowadays, scientists in health areas make these analyses manually or using standalone software that provide results in plain text formats, which limit their interpretations. In this paper, we present an approach for analyzing microorganism pathogens. The analysis is performed using the information contained in the nucleotide sequence and comparing it to reference sequences. This approach allows users to calculate changes of nucleotide and amino acid from selected sequences obtained using conventional Sanger and cloning sequencing techniques. The results of our approach are deployed using different visualization techniques that facilitate results interpretation.

Keywords

Bioinformatics Pathogens Mutations analysis 

References

  1. 1.
    Mount, D.: Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press (2013)Google Scholar
  2. 2.
    Chen, J., Miller, B.F., Furano, A.V.: Repair of naturally occurring mismatches can induce mutations in flanking DNA. Elife 3, e02001 (2014)Google Scholar
  3. 3.
    Rodgers, K., McVey, M.: Error-prone repair of dna double-strand breaks. J. Cell. Physiol. 231(1), 15–24 (2016)CrossRefGoogle Scholar
  4. 4.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell. Garland Science, New York (2002). Chap. 4Google Scholar
  5. 5.
    Tang, Y.C., Amon, A.: Gene copy-number alterations: a cost-benefit analysis. Cell 152(3), 394–405 (2013)CrossRefGoogle Scholar
  6. 6.
    Murray, P.R., Rosenthal, K.S., Pfaller, M.A.: Medical Microbiology. Elsevier Health Sciences, London (2015)Google Scholar
  7. 7.
    Griffiths, A.: Modern Genetic Analysis: Integrating Genes and Genomes. Freeman, New York (2002)Google Scholar
  8. 8.
    Sanger, F., Nicklen, S., Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74(12), 5463–5467 (1977)CrossRefGoogle Scholar
  9. 9.
    Hall, T.A.: Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows. Nucleic Acids Symp. Ser. 41(41), 95–98 (1999)Google Scholar
  10. 10.
    Kalaghatgi, P., Sikorski, A.M., Knops, E., Rupp, D., Sierra, S., Heger, E., Neumann-Fraune, M., Beggel, B., Walker, A., Timm, J., et al.: Geno2pheno [HCV]-a web-based interpretation system to support hepatitis c treatment decisions in the era of direct-acting antiviral agents. PLoS ONE 11(5), e0155869 (2016)CrossRefGoogle Scholar
  11. 11.
    Garriga, C., Menéndez-Arias, L.: DR_SEQAN: a PC/Windows-based software to evaluate drug resistance using human immunodeficiency virus type 1 genotypes. BMC Infect. Dis. 6(1), 44 (2006)CrossRefGoogle Scholar
  12. 12.
    Salvatierra, K., Florez, H.: Biomedical mutation analysis (BMA): Aasoftware tool for analyzing mutations associated with antiviral resistance. F1000Research 5(1141), 1–9 (2016)Google Scholar
  13. 13.
    Rozanov, M., Plikat, U., Chappey, C., Kochergin, A., Tatusova, T.: A web-based genotyping resource for viral sequences. Nucleic Acids Res. 32, 654–659 (2004)CrossRefGoogle Scholar
  14. 14.
    McTavish, E.J., Pettengill, J., Davis, S., Rand, H., Strain, E., Allard, M., Timme, R.E.: Treetoreads-a pipeline for simulating raw reads from phylogenies. BMC Bioinf. 18(1), 178 (2017)CrossRefGoogle Scholar
  15. 15.
    Rambaut, A., Grass, N.C.: Seq-Gen: an application for the Monte Carlo simulation of dna sequence evolution along phylogenetic trees. Comput. Appl. Biosci. CABIOS 13(3), 235–238 (1997)Google Scholar
  16. 16.
    Huang, W., Li, L., Myers, J.R., Marth, G.T.: Art: a next-generation sequencing read simulator. Bioinformatics 28(4), 593–594 (2012)CrossRefGoogle Scholar
  17. 17.
    Sukumaran, J., Holder, M.T.: Dendropy: a Python library for phylogenetic computing. Bioinformatics 26(12), 1569–1571 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universidad Distrital Francisco Jose de CaldasBogotáColombia
  2. 2.Universidad Nacional de MisionesPosadasArgentina

Personalised recommendations