Advertisement

Human Societies: Understanding Observed Social Phenomena

  • Bruce Edmonds
  • Pablo Lucas
  • Juliette Rouchier
  • Richard Taylor
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

The chapter begins by briefly describing two contrasting simulations: the iconic system dynamics model publicised under the Limits to Growth book and a detailed model of first millennium Native American societies in the southwest of the United States. These are used to bring out the issues of abstraction, replicability, model comprehensibility, understanding vs. prediction and the extent to which simulations go beyond what is observed. All of these issues are rooted in some fundamental difficulties in the project of simulating observed societies that are then briefly discussed. Both issues and difficulties result in three “dimensions” in which simulation approaches differ. The core of the chapter is a look at 15 different possible simulation goals, both abstract and concrete, giving some examples of each and discussing them. The different inputs and results from such simulations are briefly discussed as to their importance for simulating human societies.

Keywords

Abstraction Assessment Assumption Counterexample Data Evaluation Evidence Explanation Exploration Fieldwork Illustration Micro/macro Modelling Participatory Pattern Prevision Process Proof Replication Representation Social context Social design Stakeholder Understanding Validation 

References

  1. Alam, S. J., Meyer, R., Ziervogel, G., & Moss, S. (2007). The impact of HIV/AIDS in the context of socioeconomic stressors: An evidence-driven approach. Journal of Artificial Societies and Social Simulation, 10(4).http://jasss.soc.surrey.ac.uk/10/4/7.html.
  2. Axelrod, R. (1984). The evolution of cooperation. New York, NY: Basic Books.MATHGoogle Scholar
  3. Axelrod, R. (1997). The complexity of cooperation. Princeton, NJ: Princeton University Press.MATHGoogle Scholar
  4. Axtell, R., Axelrod, R., Epstein, J. M., & Cohen, M. D. (1996). Aligning simulation models: A case study and results. Computational and Mathematical Organization Theory, 1(2), 123–141.CrossRefGoogle Scholar
  5. Axtell, R. L., Epstein, J. M., Dean, J. S., Gumerman, G. J., Swedlund, A. C., Harburger, J., et al. (2002). Population growth and collapse in a multi-agent model of the Kayenta Anasazi in Long House Valley. Proceedings of the National Academy of Sciences, 99(3), 7275–7279.CrossRefGoogle Scholar
  6. Barreteau, O., Bots, P., Daniell, K., Etienne, M., Perez, P., Barnaud, C., et al. (2017). Participatory approaches. doi:https://doi.org/10.1007/978-3-319-66948-9_12.Google Scholar
  7. Berman, M., Nicolson, C., Kofinas, G., Tetlichi, J., & Martin, S. (2004). Adaptation and sustainability in a small arctic community: Results of an agent-based simulation model. Arctic, 57(4), 401–414.CrossRefGoogle Scholar
  8. Bharwani, S., Bithell, M., Downing, T. E., New, M., Washington, R., & Ziervogel, G. (2005). Multi-agent modelling of climate outlooks and food security on a community garden scheme in Limpopo, South Africa. Philosophical Transactions of the Royal Society B, 360(1463), 2183–2194.CrossRefGoogle Scholar
  9. Biggs, R., Carpenter, S. R., & Brock, W. A. (2009). Turning back from the brink: Detecting an impending regime shift in time to avert it. Proceedings of the National Academy of Sciences (PNAS), 106, 826–831.CrossRefGoogle Scholar
  10. Brown, L., & Harding, A. (2002). Social modelling and public policy: Application of microsimulation modelling in Australia. Journal of Artificial Societies and Social Simulation, 5(4).http://jasss.soc.surrey.ac.uk/5/4/6.html.
  11. Cartwright, N. (1993). How the Laws of Physics Lie. Oxford: Oxford University Press.Google Scholar
  12. Christensen, K., & Sasaki, Y. (2008). Agent-based emergency evacuation simulation with individuals with disabilities in the population. Journal of Artificial Societies and Social Simulation, 11(3). http://jasss.soc.surrey.ac.uk/11/3/9.html.
  13. Clifford, J. (1986). Writing culture: The poetics and politics of ethnography. Berkeley, CA: University of California Press.Google Scholar
  14. Cole, H. S. D., Freeman, C., Jahoda, M., & Pavitt, K. L. (Eds.). (1973). Models of doom: A critique of the limits to growth. New York: Universe Books.Google Scholar
  15. Curtis, J., & Frith, D. (2008). Exit polling in a cold climate: The BBC–ITV experience in Britain in 2005. Journal of the Royal Statistical Society: Series A (Statistics in Society), 171(3), 509–539.MathSciNetCrossRefGoogle Scholar
  16. David, N., Fachada, N., & Rosa, A. C. (2017). Verifying and validating simulations. doi:https://doi.org/10.1007/978-3-319-66948-9_9.Google Scholar
  17. Deffuant, G., & Weisbuch, G. (2007). Probability distribution dynamics explaining agent model convergence to extremism. In B. Edmonds, C. Hernandez, & K. G. Troitzsch (Eds.), Social simulation: Technologies, advances and new discoveries (pp. 43–60). Hershey, PA: IGI Publishing.Google Scholar
  18. Deffuant, G., Neau, D., Amblard, F., & Weisbuch, G. (2000). Mixing beliefs among interacting agents. Advances in Complex Systems, 3(1), 87–98.CrossRefGoogle Scholar
  19. Doran, J. E. (1997). Foreknowledge in artificial societies. In R. Conte, R. Hegselmann, & P. Tierna (Eds.), Simulating social phenomena (Lecture notes in economics and mathematical systems, 456) (pp. 457–469). Berlin: Springer.Google Scholar
  20. Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6(5), 178–190.CrossRefGoogle Scholar
  21. Edmonds, B. (1999, September 9–11). The pragmatic roots of context. In P. Bouquet, L. Serafini, P. Brezillon, M. Benerecetti, & F. Castellani (Eds.), Modelling and using context, second international and interdisciplinary conference, CONTEXT’99, proceedings (Lecture notes in artificial intelligence, 1688) (pp. 119–132), Trento, Italy. Berlin: Springer. http://cfpm.org/cpmrep52.html.
  22. Edmonds, B. (2001). The use of models–making MABS actually work. In S. Moss & P. Davidsson (Eds.), Multi agent based simulation (Lecture notes in artificial intelligence, 1979) (pp. 15–32). Berlin: Springer.CrossRefGoogle Scholar
  23. Edmonds, B. (2007). The practical modelling of context-dependent causal processes—A recasting of Robert Rosen’s thought. Chemistry and Biodiversity, 4(1), 2386–2395.MathSciNetCrossRefGoogle Scholar
  24. Edmonds, B. (2010, June 23–25). Context and social simulation (Paper presented at the IV edition of Epistemological Perspectives on Simulation (EPOS2010)Hamburg, Germany).http://cfpm.org/cpmrep210.html.
  25. Edmonds, B. (2017). Five different modelling purposes. doi:https://doi.org/10.1007/ 978-3-319-66948-9_4.CrossRefGoogle Scholar
  26. Edmonds, B., & Hales, D. (2003). Replication, replication and replication-some hard lessons from model alignment. Journal of Artificial Societies and Social Simulation, 6(4).http://jasss.soc.surrey.ac.uk/6/4/11.html.
  27. Edmonds, B., & Hales, D. (2005). Computational simulation as theoretical experiment. Journal of Mathematical Sociology, 29(3), 209–232.CrossRefGoogle Scholar
  28. Edmonds, B., & Moss, S. (2005). From KISS to KIDS—An ‘anti-simplistic’ modelling approach. In P. Davidsson et al. (Eds.), Multi agent based simulation 2004 (Lecture Notes in Artificial Intelligence, 3415) (pp. 130–144). Berlin: Springer.Google Scholar
  29. Epstein, J. (2012). Why model? Journal of Artificial Social Societies Simulation, 11(4).http://jasss.soc.surrey.ac.uk/11/4/12.html.
  30. Etienne, M. (2003). SYLVOPAST: A multiple target role-playing game to assess negotiation processes in sylvopastoral management planning. Journal of Artificial Societies and Social Simulation, 6(2). http://jasss.soc.surrey.ac.uk/6/2/5.html.
  31. Galam, S. (1997). Rational group decision making: A random field Ising model at T = 0. Physica A, 238, 66–80.CrossRefGoogle Scholar
  32. Galán, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. I., Del Olmo, R., López-Paredes, A., & Edmonds, B. (2009). Errors and artefacts in agent-based modelling. Journal of Artificial Societies and Social Simulation, 12(1). http://jasss.soc.surrey.ac.uk/12/1/1.html.
  33. Gilbert, N., & Troitzsch, K. (2005). Simulation for the Social Scientist (2nd ed.). Open University Press.Google Scholar
  34. Gode, D. K., & Sunder, S. (1993). Allocative efficiency of markets with zero intelligence traders: Markets as a partial substitute for individual rationality. Journal of Political Economy, 110, 119–137.CrossRefGoogle Scholar
  35. Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987–991.CrossRefGoogle Scholar
  36. Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198(1–2), 115–126.CrossRefGoogle Scholar
  37. Grimm, V., Polhill, J. G., & Touza, J. (2017). Documenting social simulation models: The ODD protocol as a standard. doi:https://doi.org/10.1007/978-3-319-66948-9_15.Google Scholar
  38. Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 105–117). London: Sage.Google Scholar
  39. Guimera, R., Uzzi, B., Spiro, J., & Amaral, L. A. (2005). Team assembly mechanisms determine collaboration network structure and team performance. Science, 308(5722), 697–702.CrossRefGoogle Scholar
  40. Hales, D. (2017). Distributed computer systems. doi:https://doi.org/10.1007/978-3-319-66948-9_23.Google Scholar
  41. Izquierdo, S. S., & Izquierdo, L. R. (2006, September 20–23). On the Structural Robustness of Evolutionary Models of Cooperation. In E. Corchado, H. Yin, V. J. Botti, & C. Fyfe (Eds.), Intelligent data engineering and automated learning-IDEAL 2006, 7th international conference, proceedings (Lecture notes in computer science 4224) (pp. 172–182), Burgos, Spain. Berlin: Springer.Google Scholar
  42. Izquierdo, L.R. (2008). Advancing learning and evolutionary game theory with an application to social dilemmas (PhD Thesis), Manchester Metropolitan University, http://cfpm.org/theses/luisizquierdo/.
  43. Janssen, M. A. (2009). Understanding artificial anasazi. Journal of Artificial Societies and Social Simulation, 12(4). http://jasss.soc.surrey.ac.uk/12/4/13.html.
  44. Kahn, K., & Noble, H. (2009, March 02–06). The modelling4all project—A web-based modelling tool embedded in Web 2.0. In O. Dalle et al. (Eds.), Proceedings of SIMUTools ‘09, 2nd international conference on simulation tools and techniques (p. 50), Rome, Italy. Brussels: ICST, Article.Google Scholar
  45. Kephart, J. O., & Greenwald, A. R. (2002). Shopbot economics. Autonomous Agents and Multi-Agent Systems, 5(3), 255–287.MathSciNetCrossRefMATHGoogle Scholar
  46. Kirman, A. (2011). Complex economics: Individual and collective rationality. London: Routledge.Google Scholar
  47. Kirman, A. & Moulet, S. (2008). Impact de l’organisation du marché: Comparaison de la négociation de gré à gré et des enchères descendants (Working Papers, halshs-00349034). HAL, Centre pour la communication scientifique directe. http://halshs.archives-ouvertes.fr/docs/00/34/90/34/PDF/DT2008-56.pdf.
  48. Klein, G. (1998). Sources of power: How people make decisions. Cambridge, MA: MIT Press.Google Scholar
  49. Kohler, T. (2009) Generative Archaeology: How even really simple models can help in understanding the past. Invited talk at 6th conference of the European social simulation association. Guildford, United Kingdom: University of Surrey.Google Scholar
  50. Kohler, T. A., Gumerman, G. J., & Reynolds, R. G. (2005). Simulating ancient societies. Scientific American, 293(1), 76–82.CrossRefGoogle Scholar
  51. Kohler, T. A., Varien, M. D., Wright, A., & Kuckelman, K. A. (2008). Mesa Verde Migrations: New archaeological research and computer simulation suggest why ancestral Puebloans deserted the northern Southwest United States. American Scientist, 96, 146–153.CrossRefGoogle Scholar
  52. Kuhn, T. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  53. Lakatos, I., & Musgrave, A. (Eds.). (1970). Criticism and the growth of knowledge. Cambridge: Cambridge University Press.Google Scholar
  54. LeBaron, B. (2006). Agent-based computational finance. In Tesfatsion & Judd (Eds.), Handbook of computational economics (Vol. 2. North-Holland, pp. 1187–1232).Google Scholar
  55. Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage Publications.Google Scholar
  56. Lorenz, J. (2007). Continuous opinion dynamics under bounded confidence: A survey. International Journal of Modern Physics C, 18(12), 1819–1838.CrossRefMATHGoogle Scholar
  57. Lucas, P. (2010). Conventional social behaviour amongst microfinance clients—a behavioural and financial case study (PhD thesis). Centre for Policy Modelling, Manchester Metropolitan University.Google Scholar
  58. Lucas, P. (2011). Usefulness of simulating social phenomena: Evidence. AI & SOCIETY, 26(4), 355–362.CrossRefGoogle Scholar
  59. Malthus, T. (1798). An essay on the principle of population. London: Johnson. Transcript available online at http://socserv2.mcmaster.ca/~econ/ugcm/3ll3/malthus/popu.txt.
  60. Marks, R. E. (2007). Validating simulation models: A general framework and four applied examples. Computational Economics, 30(3), 265–290.CrossRefMATHGoogle Scholar
  61. Matthews, R. B. (2006). The people and landscape model (PALM): Towards full integration of human decision-making and biophysical simulation models. Ecological Modelling, 194, 329–343.CrossRefGoogle Scholar
  62. Meadows, D. H., Meadows, D., Randers, J., & Behrens, W. W., III. (1972). The limits to growth: A report for the Club of Rome’s project on the predicament of mankind. New York: Universe Books.Google Scholar
  63. Moss, S. (1998). Critical incident management: An empirically derived computational model. Journal of Artificial Societies and Social Simulation, 1(4). http://jasss.soc.surrey.ac.uk/1/4/1.html.
  64. Moss, S. (1999). Relevance, realism and rigour: A third way for social and economic research (Report no. CPM-99-56). Manchester, UK: Centre for Policy Modelling, Manchester Metropolitan University. http://cfpm.org/cpmrep56.html.
  65. Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.Google Scholar
  66. Nicolaisen, J., Petrov, V., & Tesfatsion, L. (2001). Market power and efficiency in a computational electricity market with discriminatory double-auction pricing. IEEE Transactions on Evolutionary Computation, 5(5), 504–523.CrossRefGoogle Scholar
  67. Phelps, S., McBurney, P., Parsons, S., & Sklar, E. (2002). Co-evolutionary auction mechanism design: A preliminary report. In J. Padget, O. Shehory, D. Parkes, N. Sadeh, & W. E. Walsh (Eds.), Agent-mediated electronic commerce IV, designing mechanisms and systems (Lecture Notes in Computer Science, 2531) (pp. 193–213). Berlin: Springer.Google Scholar
  68. Polhill, J. G., Gotts, N. M., & Law, A. N. R. (2001). Imitative versus non-imitative strategies in a land use simulation. Cybernetics and Systems, 32(1–2), 285–307.MATHGoogle Scholar
  69. Polhill, J. G., Parker, D., Brown, D., & Grimm, V. (2008). Using the ODD protocol for describing three agent-based social simulation models of land-use change. Journal of Artificial Societies and Social Simulation, 11(2). http://jasss.soc.surrey.ac.uk/11/2/3.html.
  70. Popper, K. (1963). Conjectures and refutations: the growth of scientific knowledge. London: Routledge.Google Scholar
  71. PNAS. (2002). Colloquium papers. Proceedings of the National Academy of Sciences, 99(s3).http://www.pnas.org/content/99/suppl. 3.toc#ColloquiumPaper.
  72. Riolo, R. L., Cohen, M. D., & Axelrod, R. (2001). Evolution of cooperation without reciprocity. Nature, 411, 441–443.CrossRefGoogle Scholar
  73. Roberts, G., & Sherratt, T. N. (2002). Does similarity breed cooperation? Nature, 418, 499–500.CrossRefGoogle Scholar
  74. Rouchier, J. (2001). Est-il possible d’utiliser une définition positive de la confiance dans les interactions entre agents? Paper presented at Colloque Interactions, Toulouse, May 2001.Google Scholar
  75. Rouchier, J. (2017). Agent-based simulation as a useful tool for the study of markets. doi:https://doi.org/10.1007/978-3-319-66948-9_25.Google Scholar
  76. Rouchier, J., Bousquet, F., Requier-Desjardins, M., Antona, M., & Econ, J. (2001). A Multi-Agent model for describing transhumance in North Cameroon: Comparison of different rationality to develop a routine. Journal of Economic Dynamics and Control, 25(3–4), 527–559.CrossRefMATHGoogle Scholar
  77. Rouchier, J., & Thoyer, S. (2006). Votes and lobbying in the European decision-making process: Application to the European regulation on GMO release. Journal of Artificial Societies and Social Simulation, 9(3). http://jasss.soc.surrey.ac.uk/9/3/1.html.
  78. Saqalli, M., Bielders, C. L., Gerard, B., & Defourny, P. (2010). Simulating rural environmentally and socio-economically constrained multi-activity and multi-decision societies in a low-data context: A challenge through empirical agent-based modeling. Journal of Artificial Societies and Social Simulation, 13(2). http://jasss.soc.surrey.ac.uk/13/2/1.html.
  79. Schelling, T. (1969). Models of segregation. American Economic Review, 59(2), 488–493.Google Scholar
  80. Schelling, T. (1971). Dynamic Models of Segregation. Journal of Mathematical Sociology, 1, 143–186.CrossRefMATHGoogle Scholar
  81. Scherer, A., & McLean, A. (2002). Mathematical models of vaccination. British Medical Bulletin, 62(1), 187–199.CrossRefGoogle Scholar
  82. Snijders, T. A. B., Steglich, C. E. G., & van de Bunt, G. G. (2010). Introduction to actor-based models for network dynamics. Social Networks, 32, 44–60.CrossRefGoogle Scholar
  83. Sun, R. (2005). Theoretical status of computational cognitive modelling (Technical report). Troy, NY: Cognitive Science Department, Rensselaer Polytechnic Institute.Google Scholar
  84. Terán, O., Alvarez, J., Ablan, M., & Jaimes, M. (2007). Characterising emergence of landowners in a forest reserve. Journal of Artificial Societies and Social Simulation, 10(3).http://jasss.soc.surrey.ac.uk/10/3/6.html.
  85. Vermeulen, P. J., & de Jongh, D. C. J. (1976). Parameter sensitivity of the ‘Limits to Growth’ world model. Applied Mathematical Modelling, 1(1), 29–32.CrossRefMATHGoogle Scholar
  86. von Randow, G. (2003). When the centre becomes radical. Journal of Artificial Societies and Social Simulation, 6(1). http://jasss.soc.surrey.ac.uk/6/1/5.html.
  87. White, D. R. (1999). Controlled simulation of marriage systems. Journal of Artificial Societies and Social Simulation, 2(3). http://jasss.soc.surrey.ac.uk/2/3/5.html.
  88. Yang, C., Kurahashi, S., Kurahashi, K., Ono, I., & Terano, T. (2009). Agent-based simulation on women’s role in a family line on civil service examination in Chinese history. Journal of Artificial Societies and Social Simulation, 12(2), 5. http://jasss.soc.surrey.ac.uk/12/2/5.html.
  89. Younger, S. (2005). Violence and revenge in egalitarian societies. Journal of Artificial Societies and Social Simulation, 8(4). http://jasss.soc.surrey.ac.uk/8/4/11.html.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bruce Edmonds
    • 1
  • Pablo Lucas
    • 2
  • Juliette Rouchier
    • 3
  • Richard Taylor
    • 4
  1. 1.Centre for Policy ModellingManchester Metropolitan UniversityManchesterUK
  2. 2.School of SociologyUniversity College DublinDublin 4Ireland
  3. 3.LAMSADE, Paris-DauphineParis Cedex 16France
  4. 4.Oxford BranchStockholm Environment InstituteStockholmSweden

Personalised recommendations