Inventory Allocation of Perishables: Guidelines

  • Kasper Kiil
  • Hans-Henrik Hvolby
  • Heidi C. Dreyer
  • Jan Ola Strandhagen
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 514)


The purpose of this study is to investigate and propose guidelines for how to allocate perishables to improve the balance of freshness and availability in retail stores. Specifically, it is investigated how a single warehouse can make the allocation decision to stores with and without access to remaining shelf life information of the products in the stores. Contrary to complex decisions models, this study aim to develop simple guidelines that can be applied manually or easily integrated into existing decision support systems.


Inventory allocation Food supply chain Perishables Information sharing Remaining shelf life 



We gratefully acknowledge the assistance provided by the Norwegian Research Council for the financial support of Retail Supply Chain 2020 that enabled this study.


  1. 1.
    Fredriksson, A., Liljestrand, K.: Capturing food logistics: a literature review and research agenda. Int. J. Logist. Res. Appl. 18(1), 16–34 (2015)CrossRefGoogle Scholar
  2. 2.
    Van der Vorst, J.G., Tromp, S.-O., Zee, D.-J.V.D.: Simulation modelling for food supply chain redesign; integrated decision making on product quality, sustainability and logistics. Int. J. Prod. Res. 47(23), 6611–6631 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Van Donselaar, K., et al.: Inventory control of perishables in supermarkets. Int. J. Prod. Econ. 104(2), 462–472 (2006)CrossRefGoogle Scholar
  4. 4.
    Broekmeulen, R.A., van Donselaar, K.H.: A heuristic to manage perishable inventory with batch ordering, positive lead-times, and time-varying demand. Comput. Oper. Res. 36(11), 3013–3018 (2009)CrossRefMATHGoogle Scholar
  5. 5.
    Blackburn, J., Scudder, G.: Supply chain strategies for perishable products: the case of fresh produce. Prod. Oper. Manag. 18(2), 129–137 (2009)CrossRefGoogle Scholar
  6. 6.
    Soysal, M., et al.: A review on quantitative models for sustainable food logistics management. Int. J. Food Syst. Dyn. 3(2), 136–155 (2012)Google Scholar
  7. 7.
    Van der Heijden, M.: Supply rationing in multi-echelon divergent systems. Eur. J. Oper. Res. 101(3), 532–549 (1997)CrossRefMATHGoogle Scholar
  8. 8.
    Diks, E.B., De Kok, A.: Optimal control of a divergent multi-echelon inventory system. Eur. J. Oper. Res. 111(1), 75–97 (1998)CrossRefMATHGoogle Scholar
  9. 9.
    Karaesmen, I.Z., Scheller-Wolf, A., Deniz, B.: Managing perishable and aging inventories: review and future research directions. In: Kempf, K., Keskinocak, P., Uzsoy, R. (eds.) Planning Production and Inventories in the Extended Enterprise, pp. 393–436. Springer, Boston (2011). doi: 10.1007/978-1-4419-6485-4_15 CrossRefGoogle Scholar
  10. 10.
    Lystad, E., Ferguson, M., Alexopoulos, C.: Single stage heuristic for perishable inventory control in two-echelon supply chains. Unpublished (Working paper) (2006)Google Scholar
  11. 11.
    Chew, E.P., Lee, C., Liu, R.: Joint inventory allocation and pricing decisions for perishable products. Int. J. Prod. Econ. 120(1), 139–150 (2009)CrossRefGoogle Scholar
  12. 12.
    Federgruen, A., Prastacos, G., Zipkin, P.H.: An allocation and distribution model for perishable products. Oper. Res. 34(1), 75–82 (1986)CrossRefMATHGoogle Scholar
  13. 13.
    de Man, J., et al.: Automating scheduling tasks; experience of a real case. In: 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE (2015)Google Scholar
  14. 14.
    Janssen, L., Claus, T., Sauer, J.: Literature review of deteriorating inventory models by key topics from 2012 to 2015. Int. J. Prod. Econ. 182, 86–112 (2016)CrossRefGoogle Scholar
  15. 15.
    Van Donselaar, K.: Integral stock norms in divergent systems with lot-sizes. Eur. J. Oper. Res. 45(1), 70–84 (1990)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Prastacos, G.P.: Optimal myopic allocation of a product with fixed lifetime. J. Oper. Res. Soc. 29(9), 905–913 (1978)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fujiwara, O., Soewandi, H., Sedarage, D.: An optimal ordering and issuing policy for a two-stage inventory system for perishable products. Eur. J. Oper. Res. 99(2), 412–424 (1997)CrossRefMATHGoogle Scholar
  18. 18.
    Duan, Q., Liao, T.W.: A new age-based replenishment policy for supply chain inventory optimization of highly perishable products. Int. J. Prod. Econ. 145(2), 658–671 (2013)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Kasper Kiil
    • 1
    • 2
  • Hans-Henrik Hvolby
    • 1
    • 2
  • Heidi C. Dreyer
    • 3
  • Jan Ola Strandhagen
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Celog, Department of Materials and ProductionAalborg UniversityAalborgDenmark
  3. 3.Department of Industrial Economics and Technology ManagementNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations