Impact of Technology on Work: Technical Functionalities that Give Rise to New Job Designs in Industry 4.0

  • S. Waschull
  • J. A. C. Bokhorst
  • J. C. Wortmann
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 513)


With rapid advancements in the application of Industry 4.0 technologies throughout industries, a collection of different views on its potential implications for workers are emerging. Various authors agree that these technologies and their application in manufacturing systems is structurally different compared to current methods of production. Consequently, it is expected that the impact on manufacturing jobs, specifically on the tasks, is profoundly different from what we already know from literature. However, authors often borrow from existing literature to describe changes in work, and are not explicit on how and why Industry 4.0 and the implications is conceptually different. Until now, little research has focused on defining the technical functionalities that give rise to new job designs. This paper therefore focuses on synthesizing the diverging views on the effect of Industry 4.0 on employees’ jobs and specifically aims to understand how the technical changes of the transformation towards a Cyber Physical System in production relate to changes in job design. The central question this paper addresses is: How do the technical changes of the transformation towards a Cyber Physical System impact job design in industrial production? The contribution is an overview of the technical functionalities of Cyber-Physical Systems that are conjectured to change direct and indirect value-adding jobs in industrial production. This model will be used as a basis for further empirical inquiries. Moreover, it provides central points of interests for organizations involved with the design and implementation of Industry 4.0, focusing on job design.


Industry 4.0 Cyber Physical System Technical functionalities Job design 


  1. 1.
    Wahster, K.H., et al.: Umsetzungsempfehlungen für das Zukunftsproject Industrie 4.0. Abschlussbericht des Arbeitskreises Industrie 4.0 (2013)Google Scholar
  2. 2.
    Yoon, J.S., Seung-Jun, S., Suh, S.H.: A conceptual framework for the ubiquitous factory. Int. J. Prod. Res. 50(8), 2174–2189 (2012)CrossRefGoogle Scholar
  3. 3.
    Drath, R., Horch, A.: Industrie 4.0: hit or hype. IEEE Ind. Electron. Mag. 8(2), 56–58 (2014)CrossRefGoogle Scholar
  4. 4.
    Avant, R.: The third great Wave. In: The Economist, Special Report (2014)Google Scholar
  5. 5.
    Brennan, L., et al.: Manufacturing in the world: where next? Int. J. Oper. Prod. Manag. 35(9), 1253–1274 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Botthof, A.: Zukunft der Arbeit im Kontext von Autonomik und Industrie 4.0. In: Botthof, A. (ed.) Zukunft der Arbeit in Industrie 4.0, pp. 4–6. Springer, Berlin (2015)Google Scholar
  7. 7.
    Kagermann, H.: Chancen von Industrie 4.0 nutzen. In: Bauernhansl, et al. (eds.) Industrie 4.0 in Produktion, Automatisierung und Logistik. Springer, Wiesbaden (2014)Google Scholar
  8. 8.
    Attewell, P.: Skill and occupational changes in U.S. Manufacturing. In: Adler, P.S. (ed.) Technology and the Future of Work, pp. 46–88. Oxford University Press, New York (1991)Google Scholar
  9. 9.
    DeSanctis, G., Poole, M.S.: Capturing the complexity in advanced technology use: adaptive structuration theory. Organ. Sci. 5(2), 121–147 (1994)CrossRefGoogle Scholar
  10. 10.
    Braverman, H.: Labor and Monopoly Capital. Monthly Review Press, New York (1974)Google Scholar
  11. 11.
    Berg, M.: The Machinery Question and the Making of Political Economy. Cambridge University Press, Cambridge (1982)Google Scholar
  12. 12.
    Sorge, A., Streeck, W.: Industrial relations and technical change: the case for an extended perspective. In: Hyman, R., Streeck, W. (eds.) New Technology and Industrial Relations, pp. 19–57. Basil Blackwell, Oxford (1988)Google Scholar
  13. 13.
    Hirschhorn, L.: Beyond Mechanization: Work and Technology in a Postindustrial Age. MIT Press, Cambridge (1984)Google Scholar
  14. 14.
    Spenner, K.I.: Deciphering prometheus: temporal change in the skill level of work. Am. Sociol. Rev. 48, 824–873 (1983)CrossRefGoogle Scholar
  15. 15.
    Zuboff, S.: In the Age of the Smart Machine. Basic Books, New Jersey (1988)Google Scholar
  16. 16.
    Adler, P.: New technologies, new skills. Calif. Manag. Rev. 29, 9–28 (1986)Google Scholar
  17. 17.
    Clarke, J., et al.: The Process of Technological Change. Cambridge University Press, Cambridge (1988)Google Scholar
  18. 18.
    Liker, J.K., Fleischer, M.: Implementing computer-aided design: the transition of non-users. IEEE Trans. Eng. Mgmt. 36(3), 180–190 (1989)CrossRefGoogle Scholar
  19. 19.
    Wall, et al.: Advanced Manufacturing technology and work design: Towards a theoretical framework. J. Organ. Behav. 11, 201–219 (1990)CrossRefGoogle Scholar
  20. 20.
    Hirsch-Kreinsen, H.: Digitization of industrial work: development paths and prospects. J. Lab. Market Res. 49, 1–14 (2016)CrossRefGoogle Scholar
  21. 21.
    Bauernhansl, T.: Die vierte industrielle revolution – Der Weg in ein wertschaffendes Produkti-onsparadigma. In: Bauernhansl, et al. (eds.) Industrie 4.0 in Produktion, Automatisierung und Logistik, pp. 5–36. Springer, Wiesbaden (2014)Google Scholar
  22. 22.
    Gorecky, D., Schmitt, M., Loskyll, M., Zuehlke, D.: Mensch-machine-interaktion im industrie 4.0-zeitalter. In: Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds.) Industrie 4.0 Produktion, Auto-matisierung und Logistik: Anwendung, Technologien und Migration, pp. 525–542. Springer, Wiesbaden (2014)Google Scholar
  23. 23.
    Dworschak, B., Zaiser, H.: Comptences or cyber-physical systems in manufacturing – first findings and scenarios. Procedia CIRP 25, 345–350 (2014)CrossRefGoogle Scholar
  24. 24.
    Koelmel, B., et al.: Usability requirements for complex cyber physical systems in a totally networked world. In: Camarinha-Matos, L.M., Afsarmanesh, H. (eds.) Advances in Production Management Systems. Sustainable Production and Service Supply Chains (2014)Google Scholar
  25. 25.
    Windelband, L.: Zukunft der Facharbeit im Zeitalter “Industrie 4.0”. J. Techn. Educ. 2, 138–160 (2014)Google Scholar
  26. 26.
    Windelband, L., et al.: Zukünftige Qualifikationsanforderungen durch das Internet der Dinge in der Logistik, pp. 5–10. FreQueNz, Bonn (2011)Google Scholar
  27. 27.
    Romero, D., Bernus, P., Noran, O., Stahre, J.: The operator 4.0: human cyber-physical systems and adaptive automation towards human-automation symbiosis work systems. In: Nääs, I., et al. (eds.) APMS, 2016. IFIPAICT, vol. 448. Springer, Cham (2016). doi: 10.1007/978-3-319-51133-7_80 Google Scholar
  28. 28.
    The Economist. Digital Taylorism (2015)Google Scholar
  29. 29.
    Edwards, P., Ramirez, P.: When to embrace or resist new technology? New Technol. Work Employ. 31(2), 99–113 (2016)CrossRefGoogle Scholar
  30. 30.
    Frey, C.B., Osborne, M.A.: The future of employment: how susceptible are jobs to computerization? (2013)Google Scholar
  31. 31.
    Fantini, et al.: Exploring the integration of the human as a flexibility factor in CPS enabled manufacturing environments: methodology and results. In: IECON 2016 – 42nd Conference of the IEEE Industrial Electronics Society (2016)Google Scholar
  32. 32.
    Lee, E.A.: Cyber physical systems: design challenges. In: 11th IEEE Symposium on Object oriented Real-time Distributed Manufacturing (2008)Google Scholar
  33. 33.
    Herman, et al.: Design principles for industry 4.0 Scenarios. In: 49th Hawaii International Conference on System Sciences (HICSS). IEEE (2016)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Department of OperationsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations