Advertisement

A Mechanizable First-Order Theory of Ordinals

  • Peter H. Schmitt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10501)

Abstract

We present a first-order theory of ordinals without resorting to set theory. The theory is implemented in the KeY program verification system which is in turn used to prove termination of a Java program computing the Goodstein sequences.

References

  1. 1.
    Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS, vol. 10001. Springer, Cham (2016). doi: 10.1007/978-3-319-49812-6 Google Scholar
  2. 2.
    Bachmann, H.: Transfinite Zahlen. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 1, 2nd edn. Springer, Heidelberg (1967). doi: 10.1007/978-3-642-88514-3 CrossRefzbMATHGoogle Scholar
  3. 3.
    Belinfante, J.G.F.: On computer-assisted proofs in ordinal number theory. J. Autom. Reason. 22(2), 341–378 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Blanchette, J.C., Fleury, M., Traytel, D.: Nested multisets, hereditary multisets, and syntactic ordinals in isabelle/hol (under submission)Google Scholar
  5. 5.
    Blanchette, J.C., Fleury, M., Traytel, D.: Formalization of nested multisets, hereditary multisets, and syntactic ordinals. Archive of Formal Proofs, November 2016. http://isa-afp.org/entries/Nested_Multisets_Ordinals.shtml. Formal proof development
  6. 6.
    Castéran, P., Contejean, E.: On ordinal notations. https://github.com/coq-contribs/cantor
  7. 7.
    Castéran, P., Contejean, E.: On ordinal notations. https://coq.inria.fr/V8.2pl1/contribs/Cantor.epsilon0.Goodstein.html
  8. 8.
    Grimm, J.: Implementation of three types of ordinals in Coq. Research report RR-8407, CRISAM - Inria Sophia Antipolis (2013)Google Scholar
  9. 9.
    Huffman, B.: Countable ordinals. Archive of Formal Proofs, November 2005. http://afp.sf.net/entries/Ordinal.shtml. Formal proof development
  10. 10.
    Kirby, L., Paris, J.: Accessible independence results for Peano arithmetic. Bull. Lond. Math. Soc. 14(4), 285–293 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Klaua, D.: Kardinal- und Ordinalzahlen, Teil 1. Wissenschaftliche Taschenbücher: Mathematik, Physik. Vieweg Braunschweig (1974)Google Scholar
  12. 12.
    Klaua, D.: Kardinal- und Ordinalzahlen, Teil 2. Wissenschaftliche Taschenbücher: Mathematik, Physik. Vieweg Braunschweig (1974)Google Scholar
  13. 13.
    Manolios, P., Vroon, D.: Algorithms for ordinal arithmetic. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 243–257. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45085-6_19 CrossRefGoogle Scholar
  14. 14.
    Manolios, P., Vroon, D.: Ordinal arithmetic: algorithms and mechanization. J. Autom. Reason. 34(4), 387–423 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Norrish, M., Huffman, B.: Ordinals in HOL: transfinite arithmetic up to (and beyond) \(\omega _1\). In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 133–146. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39634-2_12 CrossRefGoogle Scholar
  16. 16.
    Rathjen, M.: Goodstein revisited. ArXiv e-prints, May 2014Google Scholar
  17. 17.
    Rathjen, M.: Goodstein’s theorem revisited. In: Kahle, R., Rathjen, M. (eds.) Gentzen’s Centenary, pp. 229–242. Springer, Cham (2015). doi: 10.1007/978-3-319-10103-3_9 CrossRefGoogle Scholar
  18. 18.
    Goodstein, R.L.: On the restricted ordinal theorem. JSL 9, 33–41 (1944)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Schmitt, P.H.: A first-order theory of ordinals. Technical report 6, Department of Informatics, Karlsruhe Institute of Technology (2017)Google Scholar
  20. 20.
    Takeuti, G.: A formalization of the theory of ordinal numbers. J. Symb. Logic 30, 295–317 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Takeuti, G., Zaring, W.M.: Introduction to Axiomatic Set Theory. Graduate Texts in Mathematics, vol. 1. Springer, New York (1971). doi: 10.1007/978-1-4684-9915-5 zbMATHGoogle Scholar
  22. 22.
    Ulbrich, M.: Dynamic logic for an intermediate language: verification, interaction and refinement. Ph.D. thesis, Karlsruhe Institute of Technology, June 2013Google Scholar
  23. 23.
    Winkler, S., Zankl, H., Middeldorp, A.: Beyond Peano arithmetic–automatically proving termination of the goodstein sequence. In: van Raamsdonk, F. (ed.) 24th International Conference on Rewriting Techniques and Applications (RTA 2013). Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 21, pp. 335–351. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of InformaticsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations