Advertisement

Modelling and Verification of Timed Robotic Controllers

  • Pedro RibeiroEmail author
  • Alvaro Miyazawa
  • Wei Li
  • Ana Cavalcanti
  • Jon Timmis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10510)

Abstract

Designing robotic systems can be very challenging, yet controllers are often specified using informal notations with development driven primarily by simulations and physical experiments, without relation to abstract models of requirements. The ability to perform formal analysis and replicate results across different robotic platforms is hindered by the lack of well-defined formal notations. In this paper we present a timed state-machine based formal notation for robotics that is informed by current practice. We motivate our work with an example from swarm robotics and define a compositional CSP-based discrete timed semantics suitable for refinement. Our results support verification and, importantly, enable rigorous connection with sound simulations and deployments.

Keywords

Semantics Refinement Process algebra CSP Robotics 

Notes

Acknowledgments

This work is funded by EPSRC grant EP/M025756/1. No new primary data was created during this study.

References

  1. 1.
    Chen, J., Gauci, M., Gross, R.: A strategy for transporting tall objects with a swarm of miniature mobile robots. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 863–869, May 2013Google Scholar
  2. 2.
    Liu, W., Winfield, A.F.T.: Modeling and optimization of adaptive foraging in swarm robotic systems. Int. J. Robot. Res. 29(14), 1743–1760 (2010)CrossRefGoogle Scholar
  3. 3.
    Li, W., Miyazawa, A., Ribeiro, P., Cavalcanti, A.L.C., Woodcock, J.C.P., Timmis, J.: From formalised state machines to implementation of robotic controllers. In: Chong, N.-Y., Cho, Y.-J. (eds.) DARS 2016. Springer, London (2016)Google Scholar
  4. 4.
    Schneider, S.: Concurrent and Real-time Systems: the CSP Approach. Worldwide Series in Computer Science. Wiley, Chichester (2000)Google Scholar
  5. 5.
    Sherif, A., Cavalcanti, A.L.C., He, J., Sampaio, A.C.A.: A process algebraic framework for specification and validation of real-time systems. Formal Aspects Comput. 22(2), 153–191 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Woodcock, J.C.P., Davies, J.: Using Z-Specification, Refinement, and Proof. Prentice-Hall, Englewood Cliffs (1996)zbMATHGoogle Scholar
  7. 7.
    Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  8. 8.
    Woodcock, J.: The miracle of reactive programming. In: Butterfield, A. (ed.) UTP 2008. LNCS, vol. 5713, pp. 202–217. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14521-6_12 CrossRefGoogle Scholar
  9. 9.
    Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54862-8_13 CrossRefGoogle Scholar
  10. 10.
    Hilder, J.A., Owens, N.D.L., Neal, M.J., Hickey, P.J., Cairns, S.N., Kilgour, D.P.A., Timmis, J., Tyrrell, A.M.: Chemical detection using the receptor density algorithm. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 42(6), 1730–1741 (2012)CrossRefGoogle Scholar
  11. 11.
    Dixon, C., Winfield, A.F.T., Fisher, M., Zeng, C.: Towards temporal verification of swarm robotic systems. Robot. Auton. Syst. 60(11), 1429–1441 (2012)CrossRefGoogle Scholar
  12. 12.
    Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer, Cham (2015). doi: 10.1007/978-3-319-14806-9_2 Google Scholar
  13. 13.
    Nouyan, S., Gross, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-organized robot colonies. IEEE Trans. Evol. Comput. 13(4), 695–711 (2009)CrossRefGoogle Scholar
  14. 14.
    Pini, G., Brutschy, A., Scheidler, A., Dorigo, M., Birattari, M.: Task partitioning in a robot swarm: object retrieval as a sequence of subtasks with direct object transfer. Artif. Life 20(3), 291–317 (2014)CrossRefGoogle Scholar
  15. 15.
    Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A survey on domain-specific modeling and languages in Robotics. J. Softw. Eng. Robot. 7(1), 75–99 (2016)Google Scholar
  16. 16.
    Foughali, M., Berthomieu, B., Dal Zilio, S., Ingrand, F., Mallet, A.: Model checking real-time properties on the functional layer of autonomous robots. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 383–399. Springer, Cham (2016). doi: 10.1007/978-3-319-47846-3_24 CrossRefGoogle Scholar
  17. 17.
    Fleurey, F., Solberg, A.: A domain specific modeling language supporting specification, simulation and execution of dynamic adaptive systems. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 606–621. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04425-0_47 CrossRefGoogle Scholar
  18. 18.
    Musliner, D.J., Durfee, E.H., Shin, K.G.: CIRCA: a cooperative intelligent real-time control architecture. IEEE Trans. Syst. Man Cybern. 23(6), 1561–1574 (1993)CrossRefGoogle Scholar
  19. 19.
    Espiau, B., Kapellos, K., Jourdan, M.: Formal verification in robotics: why and how? In: Giralt, G., Hirzinger, G. (eds.) Robotics Research, pp. 225–236. Springer, London (1996)CrossRefGoogle Scholar
  20. 20.
    Schlegel, C., Hassler, T., Lotz, A., Steck, A.: Robotic software systems: from code-driven to model-driven designs. In: International Conference on Advanced Robotics, ICAR 2009, 1–8 June 2009Google Scholar
  21. 21.
    Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-specific language to design, simulate and deploy robotic applications. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol. 7628, pp. 149–160. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34327-8_16 CrossRefGoogle Scholar
  22. 22.
    Rasch, H., Wehrheim, H.: Checking consistency in UML diagrams: classes and state machines. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 229–243. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39958-2_16 CrossRefGoogle Scholar
  23. 23.
    Davies, J., Crichton, C.: Concurrency and refinement in the unified modeling language. Formal Aspects Comput. 15(2–3), 118–145 (2003)CrossRefzbMATHGoogle Scholar
  24. 24.
    Selic, B., Grard, S.: Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE: Developing Cyber-Physical Systems. Morgan Kaufmann Publishers Inc., Burlington (2013)Google Scholar
  25. 25.
    Selic, B.: Using UML for modeling complex real-time systems. In: Mueller, F., Bestavros, A. (eds.) LCTES 1998. LNCS, vol. 1474, pp. 250–260. Springer, Heidelberg (1998). doi: 10.1007/BFb0057795 CrossRefGoogle Scholar
  26. 26.
    Ramos, R., Sampaio, A., Mota, A.: A semantics for UML-RT active classes via mapping into circus. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 99–114. Springer, Heidelberg (2005). doi: 10.1007/11494881_7 CrossRefGoogle Scholar
  27. 27.
    Akhlaki, K.B., Tunon, M.I.C., Terriza, J.A.H., Morales, L.E.M.: A methodological approach to the formal specification of real-time systems by transformation of UML-RT design models. Sci. Comput. Program. 65(1), 41–56 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zic, J.J.: Time-constrained buffer specifications in CSP + T and timed CSP. ACM Trans. Program. Lang. Syst. 16(6), 1661–1674 (1994)CrossRefGoogle Scholar
  29. 29.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996). doi: 10.1007/BFb0020949 CrossRefGoogle Scholar
  31. 31.
    Miyazawa, A., et al.: RoboChart reference manual. Technical report, University of York (2017). http://bit.ly/2plUry4
  32. 32.
    RoboCalc Project: RoboChart Case Studies (2017).www.cs.york.ac.uk/circus/RoboCalc/case-studies/

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pedro Ribeiro
    • 1
    Email author
  • Alvaro Miyazawa
    • 1
  • Wei Li
    • 2
  • Ana Cavalcanti
    • 1
  • Jon Timmis
    • 2
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK
  2. 2.Department of Electronic EngineeringUniversity of YorkYorkUK

Personalised recommendations