Using Bibliometrics and Fuzzy Linguistic Modeling to Deal with Cold Start in Recommender Systems for Digital Libraries

  • Alvaro Tejeda-Lorente
  • Juan Bernabé-Moreno
  • Carlos Porcel
  • Enrique Herrera-Viedma
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 643)


Every recommender system approach suffers the cold start problem to a greater or lesser extent. To soften this impact, the more common solution is to find the way of populating users profiles either using hybrid approach or finding external data sources. In this paper, we present a fuzzy linguistic approach that using bibliometrics aids to soft or remove the necessity of interaction of users providing them with personalized profiles built beforehand, thus reducing the cold start problem. To prove the effectiveness of the system, we conduct a test involving some researchers, aiming to build their profiles automatically. The results obtained proved to be satisfactory for the researchers.


Recommender system Cold start Fuzzy linguistic modeling Digital library 



This paper has been developed with the FEDER financing under Projects TIN2013-40658-P and TIN2016-75850-R


  1. 1.
    Bordogna, G., Pasi, G.: A fuzzy linguistic approach generalizing boolean information retrieval: A model and its evaluation. J. Am. Soc. Inf. Sci. 44(2), 70 (1993)CrossRefGoogle Scholar
  2. 2.
    Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 377–408 (2007)Google Scholar
  3. 3.
    Chen, P.Y., Wu, S.Y.: Does collaborative filtering technology impact sales? empirical evidence from (2007).
  4. 4.
    Claypool, M., Gokhale, A., Miranda, T.: Combining content-based and collaborative filters in an online newspaper. In: Proceedings of the ACM SIGIR 1999 Workshop on Recommender Systems-Implementation and Evaluation, pp. 714–720 (1999)Google Scholar
  5. 5.
    Delgado, M., Herrera, F., Herrera-Viedma, E., Martinez, L.: Combining numerical and linguistic information in group decision making. Inf. Sci. 107(1–4), 177–194 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Edmunds, A., Morris, A.: The problem of information overload in business organizations: a review of the literature. Int. J. Inf. Manage. 20, 17–28 (2000)CrossRefGoogle Scholar
  7. 7.
    Esteban, B., Tejeda-Lorente, A., Porcel, C., Arroyo, M., Herrera-Viedma, E.: TPLUFIB-WEB: A fuzzy linguistic web system to help in the treatment of low back pain problems. Knowl. Based Syst. 67, 429–438 (2014)CrossRefGoogle Scholar
  8. 8.
    Good, N., Schafer, J., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., Riedl, J.: Combining collaborative filtering with personal agents for better recommendations. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence, AAAI/IAAI, pp. 439–446 (1999)Google Scholar
  9. 9.
    Hanani, U., Shapira, B., Shoval, P.: Information filtering: Overview of issues, research and systems. User Model. User-Adap. Inter. 11, 203–259 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  11. 11.
    Herrera, F., Herrera-Viedma, E.: Choice functions and mechanisms for linguistic preference relations. Eur. J. Oper. Res. 120, 144–161 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 8(6), 746–752 (2000)CrossRefGoogle Scholar
  13. 13.
    Herrera, F., Martínez, L.: A model based on linguistic 2-tuples for dealing with multigranularity hierarchical linguistic contexts in multiexpert decision-making. IEEE Trans. Syst. Man Cybern. Part B Cybern. 31(2), 227–234 (2001)CrossRefGoogle Scholar
  14. 14.
    Herrera-Viedma, E., López-Herrera, A., Luque, M., Porcel, C.: A fuzzy linguistic irs model based on a 2-tuple fuzzy linguistic approach. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 15(2), 225–250 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hsu, M.: A personalized english learning recommender system for ESL students. Expert Syst. Appl. 34, 377–408 (2008)Google Scholar
  16. 16.
    Kotsiantis, S.B.: Supervised machine learning: A review of classification techniques. In: Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies, pp. 3–24. IOS Press, Amsterdam, The Netherlands (2007)Google Scholar
  17. 17.
    Lika, B., Kolomvatsos, K., Hadjiefthymiades, S.: Facing the cold start problem in recommender systems. Expert Syst. Appl. 41(4, Part 2), 2065–2073 (2014)CrossRefGoogle Scholar
  18. 18.
    Liu, H., Hu, Z., Mian, A., Tian, H., Zhu, X.: A new user similarity model to improve the accuracy of collaborative filtering. Knowl. Based Syst. 56, 156–166 (2014)CrossRefGoogle Scholar
  19. 19.
    Long-Sheng, C., Fei-Hao, H., Mu-Chen, C., Yuan-Chia, H.: Developing recommender systems with the consideration of product profitability for sellers. Inf. Sci. 178(4), 1032–1048 (2008)CrossRefGoogle Scholar
  20. 20.
    Lops, P., Gemmis, M., Semeraro, G.: Content-based recommender systems: State of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–106. Springer (2011)Google Scholar
  21. 21.
    Rish, I.: An empirical study of the naive bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, Vol. 3, pp. 41–46. IBM New York (2001)Google Scholar
  22. 22.
    Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 253–260. ACM (2002)Google Scholar
  23. 23.
    Son, L.H.: Dealing with the new user cold-start problem in recommender systems: A comparative review. Inf. Syst. 58, 87–104 (2016)CrossRefGoogle Scholar
  24. 24.
    Tejeda-Lorente, A., Porcel, C., Bernabé-Moreno, J., Herrera-Viedma, E.: Refore: A recommender system for researchers based on bibliometrics. Appl. Soft Comput. 30, 778–791 (2015)CrossRefGoogle Scholar
  25. 25.
    Tejeda-Lorente, A., Porcel, C., Peis, E., Sanz, R., Herrera-Viedma, E.: A quality based recommender system to disseminate information in a university digital library. Inf. Sci. 261, 52–69 (2014)CrossRefGoogle Scholar
  26. 26.
    Zadeh, L.: The concept of a linguistic variable and its applications to approximate reasoning. Part I, Inf. Sci. 8, 199–249 (1975), Part II, Inf. Sci. 8, 301–357 (1975), Part III. Inf. Sci. 9(1975), 43–80 (1975)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alvaro Tejeda-Lorente
    • 1
  • Juan Bernabé-Moreno
    • 1
  • Carlos Porcel
    • 2
  • Enrique Herrera-Viedma
    • 1
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  2. 2.Department of Computer ScienceUniversity of JaénJaénSpain

Personalised recommendations