Advertisement

Using Group Decision Making Methods to Extract Experts Knowledge

  • Juan Antonio Morente-Molinera
  • Ignacio Javier Pérez
  • Francisco Javier Cabrerizo
  • Sergio Alonso
  • Enrique Herrera-Viedma
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 642)

Abstract

Group Decision Making methods are interesting tools that can be used for extracting subjective information from experts that are familiar with an specific topic. Although they are typically used for carrying out an alternatives ranking, a novel approach that can extract information from the experts and store it in a fuzzy ontology is presented in this paper. Thanks to this, it is possible to create a knowledge database using subjective information extracted from experts in the dealt topic. This database can be helpful for other users that are interested in the stored data. The obtained information is stored in a fuzzy ontology due to its capacity of using queries to access the information and because they are able to handle the information in a organized way.

Keywords

Group decision making Fuzzy ontologies Soft computing Linguistic modelling 

References

  1. 1.
    Saaty, T.L., Kirti P.: Group Decision Making: Drawing Out and Reconciling Differences. RWS Publications (2013)Google Scholar
  2. 2.
    De Miguel, L., Sesma-Sara, M., Elkano, M., Asiain, M., Bustince, H.: An algorithm for group decision making using n-dimensional fuzzy sets, admissible orders and OWA operators. Inf. Fusion 37, 126–131 (2017)CrossRefGoogle Scholar
  3. 3.
    Tang, Y., Wen, L.L., Wei, G.W.: Approaches to multiple attribute group decision making based on the generalized Dice similarity measures with intuitionistic fuzzy information. Int. J. Knowl.-Based Intell. Eng. Syst. 21(2), 85–95 (2017)Google Scholar
  4. 4.
    Cabrerizo, F.J., Pérez, I.J., Chiclana, F., Herrera-Viedma, E.: Group decision making: consensus approaches based on soft consensus measures. In: Fuzzy Sets, Rough Sets, Multisets and Clustering, pp. 307–321. Springer (2017)Google Scholar
  5. 5.
    Li, C.C., Dong, Y., Herrera, F., Herrera-Viedma, E., Martnez, L.: Personalized individual semantics in computing with words for supporting linguistic group decision making. An application on consensus reaching. Inf. Fusion 33, 29–40 (2017)Google Scholar
  6. 6.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning I, II, III. Inf. Sci. 8–9, 199–249 (1975)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bobillo, F., Straccia, U.: The fuzzy ontology reasoner fuzzyDL. Knowl.-Based Syst. 95, 12–34 (2016)CrossRefGoogle Scholar
  8. 8.
    Straccia, U., Bobillo, F.: From fuzzy to annotated semantic web languages. In: Reasoning Web: Logical Foundation of Knowledge Graph Construction and Query Answering, pp. 203–240. Springer (2017)Google Scholar
  9. 9.
    Torra, V.: The weighted OWA operator. Int. J. Intell. Syst. 12(2), 153–166 (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    Yager, R.R.: Induced aggregation operators. Fuzzy Sets Syst. 137(1), 59–69 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Herrera, F., Herrera-Viedma, E.: Aggregation operators for linguistic weighted information. IEEE Trans. Syst. Man, Cybern. Part A Syst. Hum. 27(5), 646–656 (1997)CrossRefGoogle Scholar
  12. 12.
    Herrera-Viedma, E., Chiclana, F., Herrera, F., Alonso, S.: Group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(1), 176–189 (2007)Google Scholar
  13. 13.
    Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst. 16(2), 72–79 (2001)CrossRefGoogle Scholar
  14. 14.
    Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. Web Semant. Sci. Serv. Agents World Wide Web 6(4), 291–308 (2008)CrossRefGoogle Scholar
  15. 15.
    Baader, F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  16. 16.
    Bobillo, F., Straccia, U.: Fuzzy ontology representation using OWL 2. Int. J. Approximate Reasoning 52(7), 1073–1094 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Morente-Molinera, J.A., Wikström, R., Herrera-Viedma, E., Carlsson, C.: A linguistic mobile decision support system based on fuzzy ontology to facilitate knowledge mobilization. Decis. Support Syst. 81, 66–75 (2016)CrossRefGoogle Scholar
  18. 18.
    Sun, L., Ma, J., Zhang, Y., Dong, H., Hussain, F.K.: Cloud-FuSeR: fuzzy ontology and MCDM based cloud service selection. Future Gener. Comput. Syst. 57, 42–55 (2016)CrossRefGoogle Scholar
  19. 19.
    Ali, F., Kwak, D., Khan, P., Islam, S.R., Kim, K.H., Kwak, K.S.: Fuzzy ontology-based sentiment analysis of transportation and city feature reviews for safe traveling. Transp. Res. Part C: Emerg. Technol. 77, 33–48 (2017)CrossRefGoogle Scholar
  20. 20.
    Morente-Molinera, J.A., Prez, I.J., Ureña, M.R., Herrera-Viedma, E.: Creating knowledge databases for storing and sharing people knowledge automatically using group decision making and fuzzy ontologies. Inf. Sci. 328, 418–434 (2016)Google Scholar
  21. 21.
    Morente-Molinera, J.A., Pérez, I.J., Ureña, M.R., Herrera-Viedma, E.: On multi-granular fuzzy linguistic modeling in group decision making problems: a systematic review and future trends. Knowl.-Based Syst. 74, 49–60 (2015)CrossRefzbMATHGoogle Scholar
  22. 22.
    Zhai, Y., Xu, Z., Liao, H.: Probabilistic linguistic vector-term set and its application in group decision making with multi-granular linguistic information. Appl. Soft Comput. 49, 801–816 (2016)CrossRefGoogle Scholar
  23. 23.
    Morente-Molinera, J.A., Al-Hmouz, R., Morfeq, A., Balamash, A.S., Herrera-Viedma, E.: A decision support system for decision making in changeable and multi-granular fuzzy linguistic contexts. J. Multiple-Valued Logic Soft Comput. 26 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Juan Antonio Morente-Molinera
    • 1
  • Ignacio Javier Pérez
    • 2
  • Francisco Javier Cabrerizo
    • 3
  • Sergio Alonso
    • 4
  • Enrique Herrera-Viedma
    • 3
  1. 1.Department of Engineering, School of Engineering and TechnologyUniversidad Internacional de la Rioja (UNIR)LogroñoSpain
  2. 2.Department of Computer Sciences and EngineeringUniversity of Cádiz (UCA)CádizSpain
  3. 3.Department of Computer Science and Artificial IntelligenceUniversity of Granada (UGR)GranadaSpain
  4. 4.Department of Software EngineeringUniversity of Granada (UGR)GranadaSpain

Personalised recommendations