Advertisement

Analyzing the Behavior of Aggregation and Pre-aggregation Functions in Fuzzy Rule-Based Classification Systems with Data Complexity Measures

  • Giancarlo LuccaEmail author
  • Jose Sanz
  • Graçaliz P. Dimuro
  • Benjamín Bedregal
  • Humberto Bustince
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 642)

Abstract

In our previous works, we have generalized the Choquet integral by replacing the product by t-norms and copula functions. This generalization has led to new theoretical results in the field of aggregations functions and it has allowed to define a new concept named pre-aggregation function. We applied this generalization in the fuzzy reasoning method of fuzzy rule-based classification systems with the aim of aggregating the information given by the fired rules so that global information associated with the classes of the problem can be derived. In these works, we have shown that this application is successful since it has allowed to enhance the behavior of a classical averaging aggregation operator like the maximum, which is used in the fuzzy reasoning method of the winning rule. In this contribution, we aim at studying whether there are characteristics of the datasets that allow one to know whether an aggregation function will work better then others or not.

Keywords

Data Complexity Measure Choquet integral Aggregation and pre-aggregation functions Fuzzy rule-based classification systems 

Notes

Acknowledgment

This work is supported by Brazilian National Counsel of Technological and Scientific Development CNPq (Proc. 233950/2014-1, 306970/2013-9, 307781/2016-0), by the Spanish Ministry of Science and Technology (under project TIN2016-77356-P (AEI/FEDER, UE)), by Caixa and Fundación Caja Navarra of Spain.

References

  1. 1.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2001)zbMATHGoogle Scholar
  2. 2.
    Steinwart, I., Christmann, A.: Support Vector Machines, 1st edn. Springer, New York (2008)zbMATHGoogle Scholar
  3. 3.
    Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge (2008)Google Scholar
  4. 4.
    Quinlan, J.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)Google Scholar
  5. 5.
    Ishibuchi, H., Nakashima, T., Nii, M.: Classification and Modeling with Linguistic Information Granules, Advanced Approaches to Linguistic Data Mining, Advanced Information Processing. Springer, Berlin (2005)zbMATHGoogle Scholar
  6. 6.
    Michie, D., Spiegelhalter, D.J., Taylor, C.C., Campbell, J. (eds.): Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River (1994)zbMATHGoogle Scholar
  7. 7.
    Ho, T.K., Basu, M.: Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 289–300 (2002)CrossRefGoogle Scholar
  8. 8.
    Basu, M., Ho, T.: Data Complexity in Pattern Recognition, Advanced Information and Knowledge Processing. Springer, London (2006)CrossRefGoogle Scholar
  9. 9.
    Luengo, J., Herrera, F.: An automatic extraction method of the domains of competence for learning classifiers using data complexity measures. Knowl. Inf. Syst. 42(1), 147–180 (2015)CrossRefGoogle Scholar
  10. 10.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - I. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sanz, J.A., Galar, M., Jurio, A., Brugos, A., Pagola, M., Bustince, H.: Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system. Appl. Soft Comput. 20, 103–111 (2014)CrossRefGoogle Scholar
  12. 12.
    Sanz, J., Bernardo, D., Herrera, F., Bustince, H., Hagras, H.: A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data. IEEE Trans. Fuzzy Syst. 23(4), 973–990 (2015). http://dx.doi.org/10.1109/TFUZZ.2014.2336263 CrossRefGoogle Scholar
  13. 13.
    Barrenechea, E., Bustince, H., Fernandez, J., Paternain, D., Sanz, J.A.: Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems. Axioms 2(2), 208–223 (2013)CrossRefzbMATHGoogle Scholar
  14. 14.
    Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953–1954)Google Scholar
  15. 15.
    Lucca, G., Sanz, J., Pereira Dimuro, G., Bedregal, B., Mesiar, R., Kolesárová, A., Bustince Sola, H.: Pre-aggregation functions: construction and an application. IEEE Trans. Fuzzy Syst. 24(2), 260–272 (2016). doi: 10.1109/TFUZZ.2015.2453020 CrossRefzbMATHGoogle Scholar
  16. 16.
    Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Asiain, M.J., Elkano, M., Bustince, H.: CC-integrals: choquet-like copula-based aggregation functions and its application in fuzzy rule-based classification systems. Knowl. Based Syst. 119, 32–43 (2017)CrossRefGoogle Scholar
  17. 17.
    Alcalá-Fdez, J., Alcalá, R., Herrera, F.: A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Trans. Fuzzy Syst. 19(5), 857–872 (2011)CrossRefGoogle Scholar
  18. 18.
    Alcalá-Fdez, J., Sánchez, L., García, S., Jesus, M., Ventura, S., Garrell, J., Otero, J., Romero, C., Bacardit, J., Rivas, V., Fernández, J., Herrera, F.: Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13(3), 307–318 (2009)CrossRefGoogle Scholar
  19. 19.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Berlin (2007)zbMATHGoogle Scholar
  20. 20.
    Mayor, G., Trillas, E.: On the representation of some aggregation functions. In: Proceedings of IEEE International Symposium on Multiple-Valued Logic. IEEE, Los Alamitos, pp. 111–114 (1986)Google Scholar
  21. 21.
    Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions. Eur. J. Oper. Res. 244(1), 300–308 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Murofushi, T., Sugeno, M., Machida, M.: Non-monotonic fuzzy measures and the Choquet integral. Fuzzy Sets Syst. 64(1), 73–86 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Bustince, H., Sanz, J.A., Lucca, G., Dimuro, G.P., Bedregal, B., Mesiar, R., Kolesárová, A., Ochoa, G.: Pre-aggregation functions: definition, properties and construction methods. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 294–300. IEEE (2016)Google Scholar
  24. 24.
    Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Mesiar, R., Kolesárová, A., Bustince, H.: The notion of pre-aggregation function. In: Modeling Decisions for Artificial Intelligence. Springer, pp. 33–41 (2015)Google Scholar
  25. 25.
    Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 9(4), 506–515 (2001)CrossRefGoogle Scholar
  26. 26.
    Ho, T.K., Basu, M., Law, M.H.C.: Measures of geometrical complexity in classification problems. In: Data Complexity in Pattern Recognition, pp. 1–23. Springer (2006)Google Scholar
  27. 27.
    Smith, F.W.: Pattern classifier design by linear programming. IEEE Trans. Comput. 17(4), 367–372 (1968)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Giancarlo Lucca
    • 1
    Email author
  • Jose Sanz
    • 1
    • 2
  • Graçaliz P. Dimuro
    • 2
    • 3
  • Benjamín Bedregal
    • 4
  • Humberto Bustince
    • 1
    • 2
  1. 1.Department of Automation and ComputingUniversidad Publica de NavarraPamplonaSpain
  2. 2.Institute of Smart CitiesUniversidad Publica de NavarraPamplonaSpain
  3. 3.Centro de Ciências ComputacionaisUniversidade Federal do Rio GrandeRio GrandeBrazil
  4. 4.Departamento de Informática e Matemática AplicadaUniversidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations