Fuzzy Edge Detection on Hyperspectral Images Using Upper and Lower Operators

  • A. Lopez-Maestresalas
  • C. Lopez-Molina
  • C. Perez-Roncal
  • S. Arazuri
  • H. Bustince
  • C. Jarén
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 642)


There exists a continuous research effort aiming to port methods for grayscale image processing to more complex imagery data. Color images were an initial target for such effort, but new technologies have lead to many other types of images. In this work we focus on hyperspectral images. Specifically, we analyze how to adapt the Upper-Lower Edge Detector (ULED) to hyperspectral images; our proposal consist of fusioning band-wise information using OWA operators.


Image processing Information fusion Upper and lower operators OWA operator 


  1. 1.
    De Baets, B.: Generalized idempotence in fuzzy mathematical morphology. In: Fuzzy Techniques in Image Processing, pp. 58–75. Physica-Verlag (2000)Google Scholar
  2. 2.
    Barrenechea, E., Bustince, H., De Baets, B., Lopez-Molina, C.: Construction of interval-valued fuzzy relations with application to the generation of fuzzy edge images. IEEE Trans. Fuzzy Syst. 19(5), 819–830 (2011)CrossRefGoogle Scholar
  3. 3.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation functions: a guide for practitioners. In: Studies in Fuzziness and Soft Computing, vol. 221. Springer (2007)Google Scholar
  4. 4.
    Ben Hamza, A., He, Y., Krim, H., Willsky, A.: A multiscale approach to pixel-level image fusion. Integr. Comput. Aided Eng. 12, 135–146 (2005)Google Scholar
  5. 5.
    Bloch, I.: Fuzzy relative position between objects in image processing: a morphological approach. IEEE Trans. Patt. Anal. Mach. Intell. 21(7), 657–664 (1999)CrossRefGoogle Scholar
  6. 6.
    Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: application to edge detection. Fuzzy Sets Syst. 160(13), 1819–1840 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    ElMasry, G., Kamruzzaman, M., Sun, D.W., Allen, P.: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Crit. Rev. Food Sci. Nutr. 52(11), 999–1023 (2012)CrossRefGoogle Scholar
  9. 9.
    ElMasry, G., Sun, D.W.: Principles of hyperspectral imaging technology. In: Hyperspectral Imaging for Food Quality Analysis and Control, pp. 3–43 (2010)Google Scholar
  10. 10.
    Evans, A., Liu, X.U.: A morphological gradient approach to color edge detection. IEEE Trans. Image Process. 15(6), 1454–1463 (2006)CrossRefGoogle Scholar
  11. 11.
    Godo, L., Sandri, S.: A note on the duality between continuous t-norm and t-conorm operators. In: Proceedings of the IEEE International Conference on Fuzzy Systems, vol. 1, pp. 49–54 (2003)Google Scholar
  12. 12.
    Goetz, A., Vane, G., Solomon, J., Rock, B.: Imaging spectrometry for earth remote sensing. Science 228(4704), 1147–1152 (1985)CrossRefGoogle Scholar
  13. 13.
    González-Hidalgo, M., Massanet, S.: A fuzzy mathematical morphology based on discrete t-norms: fundamentals and applications to image processing. Soft Comput. 1–15 (2013)Google Scholar
  14. 14.
    Gowen, A., O’Donnell, C., Cullen, P., Downey, G., Frias, J.: Hyperspectral imaging-An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18(12), 590–598 (2007)CrossRefGoogle Scholar
  15. 15.
    Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Patt. Anal. Mach. Intell. 9(4), 532–550 (1987)CrossRefGoogle Scholar
  16. 16.
    Jacobson, N.P., Gupta, M.R.: Design goals and solutions for display of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 43(11), 2684–2692 (2005)CrossRefGoogle Scholar
  17. 17.
    Karakos, D., Trahanias, P.: Generalized multichannel image-filtering structures. IEEE Trans. Image Process. 6(7), 1038–1045 (1997)CrossRefGoogle Scholar
  18. 18.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lopez-Molina, C., Ayala-Martini, D., Lopez-Maestresalas, A., Bustince, H.: Baddeley’s delta metric for local contrast computation in hyperspectral imagery. In: Progress in Artificial Intelligence, pp. 1–12 (2017)Google Scholar
  20. 20.
    Lopez-Molina, C., Bustince, H., Galar, M., Fernández, J., De Baets, B.: On the use of t-conorms in the gravity-based approach to edge detection. In: Proceedings of the International Conference on Intelligent Systems Design and Applications, pp. 1347–1352 (2009)Google Scholar
  21. 21.
    Lopez-Molina, C., De Baets, B., Barrenechea, E., Bustince, H.: Edge detection on interval-valued images. In: Advances in Intelligent and Soft Computing, vol. 107, pp. 325–337. Springer, Berlin (2011)Google Scholar
  22. 22.
    Lopez-Molina, C., Marco-Detchart, C., De Miguel, L., Bustince, H., Fernandez, J., De Baets, B.: A bilateral schema for interval-valued image differentiation. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 516–523 (2016)Google Scholar
  23. 23.
    Luo, X., Wu, X., Zhang, Z.: Regional and entropy component analysis based remote sensing images fusion. J. Intell. Fuzzy Syst. (2013). In pressGoogle Scholar
  24. 24.
    Marr, D., Hildreth, E.: Theory of edge detection. Proc. Royal Soc. Lond. 207(1167), 187–217 (1980)CrossRefGoogle Scholar
  25. 25.
    Montagna, R., Finlayson, G.: Reducing integrability error of color tensor gradients for image fusion. IEEE Trans. Image Process. 22(10), 4072–4085 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Russo, F., Lazzari, A.: Color edge detection in presence of Gaussian noise using nonlinear prefiltering. IEEE Trans. Image Process. 54(1), 352–358 (2005)Google Scholar
  27. 27.
    Ruzon, M., Tomasi, C.: Color edge detection with the compass operator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 160–166 (1999)Google Scholar
  28. 28.
    van de Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Patt. Anal. Mach. Intell. 32(9), 1582–1596 (2010)CrossRefGoogle Scholar
  29. 29.
    Shafer, S.A.: Using color to separate reflection components. Technical report, University of Rochester, NY, USA (1984)Google Scholar
  30. 30.
    Socolinsky, D., Wolff, L.: Multispectral image visualization through first-order fusion. IEEE Trans. Image Process. 11(8), 923–931 (2002)CrossRefGoogle Scholar
  31. 31.
    Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation and classification of hyperspectral images using watershed transformation. Patt. Recogn. 43(7), 2367–2379 (2010)CrossRefzbMATHGoogle Scholar
  32. 32.
    Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)CrossRefzbMATHGoogle Scholar
  33. 33.
    Yao, H., Lewis, D., Sun, P.: Spectral preprocessing and calibration techniques. In: Hyperspectral Imaging for Food Quality Analysis and Control, pp. 45–78 (2010)Google Scholar
  34. 34.
    Zhu, S.Y., Plataniotis, K.N., Venetsanopoulos, A.N.: Comprehensive analysis of edge detection in color image processing. Opt. Eng. 38(4), 612–625 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. Lopez-Maestresalas
    • 1
  • C. Lopez-Molina
    • 2
  • C. Perez-Roncal
    • 1
  • S. Arazuri
    • 1
  • H. Bustince
    • 2
  • C. Jarén
    • 1
  1. 1.Dpto. Proyectos e Ingenieria RuralUniversidad Publica de NavarraPamplonaSpain
  2. 2.Dpto. Automatica y ComputacionUniversidad Publica de NavarraPamplonaSpain

Personalised recommendations