Advertisement

Fostering Students’ Competencies in Linear Algebra with Digital Resources

  • Ana Donevska-TodorovaEmail author
Chapter
Part of the ICME-13 Monographs book series

Abstract

This chapter discusses current research regarding the teaching and learning of concepts in linear algebra with the aid of (digital) resources. In particular, it looks into potential of digital resources to foster studentscompetencies in linear algebra. The aim of the chapter is to explain how technology-enhanced teaching and learning environments may contribute to developing competencies in multiple representations, visualization as well as procedural and conceptual understanding. The chapter culminates with a suggested nested model of three modes of thinking of concepts in linear algebra, which is suitable for designing teaching and learning environments.

Keywords

Linear algebra Competencies Nested model of three modes of thinking Technology 

References

  1. Bagley, S., Rasmussen, C., & Zandieh, M. (2015). Inverse, composition, and identity: The case of function and linear transformation. The Journal of Mathematical Behavior, 37, 36–47.Google Scholar
  2. Britton, S., & Henderson, J. (2009). Linear algebra revisited: An attempt to understand students’ conceptual difficulties. International Journal of Mathematical Education in Science and Technology, 40(7), 963–974.Google Scholar
  3. Bussi, M. B., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. Handbook of international research in mathematics education, New York, 746–783.Google Scholar
  4. Buteau, C., Muller, E., Marshall, N., Sacristán, A. I., & Mgombelo, J. (2016). Undergraduate Mathematics Students Appropriating Programming as a Tool for Modeling, Simulation, and Visualization: A Case Study. Digital Experiences in Mathematics Education, 2(2), 142–166.Google Scholar
  5. Caridade, C. M. R., Encinas, A. H., Martín-Vaquero, J., & Queiruga-Dios, A. (2015). CAS and real life problems to learn basic concepts in Linear Algebra course. Computer Applications in Engineering Education, 23(4), 567–577.Google Scholar
  6. Carlson, D., Johnson, C. R., Lay, D. C., & Porter, A. D. (1993). The Linear Algebra Curriculum Study Group recommendations for the first course in linear algebra. The College Mathematics Journal, 24(1), 41–46.Google Scholar
  7. Day, J. M., & Kalman, D. (1999). Teaching linear algebra: What are the questions. Department of Mathematics at American University in Washington DC, 1–16.Google Scholar
  8. De Villiers, M. (1998). To teach definitions in geometry or teach to define? In Proceedings of the 22 nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 2–248).Google Scholar
  9. Díaz, A., García López, A., & Villa Cuenca, A. D. L. (2011). An example of learning based on competences: Use of Maxima in Linear Algebra for Engineers. International Journal For Technology in Mathematics Education, 18(4), 177–181. Google Scholar
  10. Dios, A. Q., Martínez, V. G., Encinas, A. H., & Encinas, L. H. (2012). The computer as a tool to acquire and evaluate skills in math courses. In 4th International Conference on computer research and development, IPCSIT (Vol. 39).Google Scholar
  11. Donevska-Todorova, A. (2015). Conceptual Understanding of Dot Product of Vectors in a Dynamic Geometry Environment. Electronic Journal of Mathematics & Technology, 9(3).Google Scholar
  12. Donevska-Todorova, A. (2016). Procedural and Conceptual Understanding in Undergraduate Linear Algebra. In Krainer, K. & Vondrova, N. (Eds)., Proceedings INDRUM2016.Google Scholar
  13. Donevska-Todorova, A. & Trgalova, J. (2017). Learning Mathematics with Technology. A Review of Recent CERME Research. In Dooley, T. & Gueudet, G. (Eds.). Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME10, February 1 – 5, 2017). Dublin, Ireland: DCU Institute of Education and ERME.Google Scholar
  14. Donevska-Todorova, A. (2017a). Utilizing Technology to facilitate the transition between the Upper Secondary- to Tertiary Level of Linear Algebra. (unpublished PhD Thesis). Google Scholar
  15. Donevska-Todorova, A. (2017b). Recursive Exploration Space for Concepts in Linear Algebra. In Tabach, M. & Siller, S. (Eds). Uses of Technology in K-12 mathematics Education: Tools, topics and Trends. Springer (in press).Google Scholar
  16. Dorier, J. L. (2000). Epistemological Analysis of the Genesis of the Theory of Vector Spaces. In: Dorier, J. L. (Ed.). On the Teaching of Linear Algebra. Mathematics Education Library, vol 23. Springer, Dordrecht.Google Scholar
  17. Dray, T., & Manogue, C. A. (2008). The geometry of the dot and cross products. AMC, 10, 12.Google Scholar
  18. Dreyfus, T., Hillel, J., & Sierpinska, A. (1998). Cabri-based linear algebra: Transformations. European Research in Mathematics Education I, 209–221.Google Scholar
  19. Drijvers, P., Ball, L., Barzel, B., Heid, M. K., Cao, Y. & Maschietto, M. (2016). Uses of Technology in Lower Secondary Mathematics Education. ICME-13 Topical Survey, pp. 1–34. Springer International Publishing. https://doi.org//10.1007/978-3-319-33666-4.
  20. Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In The teaching and learning of mathematics at university level (pp. 275–282). Springer Netherlands.Google Scholar
  21. García, A., García, F., Del Rey, Á. M., Rodríguez, G., & De La Villa, A. (2014). Changing assessment methods: New rules, new roles. Journal of Symbolic Computation, 61, 70–84.Google Scholar
  22. García López, A., García Mazario, F., & Villa Cuenca, A. D. L. (2011). Could it be possible to replace DERIVE with MAXIMA? The International Journal for Technology in Mathematics Education, 18(3), 137–142.Google Scholar
  23. Guin, D., & Trouche, L. (1998). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3(3), 195–227.Google Scholar
  24. Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66(3), 317–333.Google Scholar
  25. Francis, K., Khan, S., & Davis, B. (2016). Enactivism, spatial reasoning and coding. Digital Experiences in Mathematics Education, 2(1), 1–20.Google Scholar
  26. Hannah, J., Stewart, S., & Thomas, M. O. J. (2016). Developing conceptual understanding and definitional clarity in linear algebra through the three worlds of mathematical thinking, Teaching Mathematics and its Applications: An International Journal of the IMA, 35(4), 216–235.Google Scholar
  27. Hegedus, S., Dalton, S., & Moreno-Armella, L. (2007). Technology that mediates and participates in mathematical cognition. Proceedings of CERME5, WG 9 Tools and technologies in mathematical didactics 1331, pp. 1419–1428.Google Scholar
  28. Heid, M. K., & Edwards, M. T. (2001). Computer algebra systems: revolution or retrofit for today’s mathematics classrooms? Theory into Practice, 40(2), 128–136.Google Scholar
  29. Hillel, J. (2000). Modes of description and the problem of representation in linear algebra. In On the teaching of linear algebra (pp. 191–207). Springer Netherlands.Google Scholar
  30. Janetzko, H.-D. (2016). The GUI CATO – how natural usage of CAS with CATO modified the mathematical lectures and the interface itself. In the Proceedings of the 22nd Conference on Applications of Computer Algebra, ACA, August 2016, Kassel, Germany.Google Scholar
  31. Jin, L., & Bi, C. (2011, July). Application of matlab software for linear algebra. In Circuits, Communications and System (PACCS), 2011 Third Pacific-Asia Conference on (pp. 1–3). IEEE.Google Scholar
  32. Konyalioglu, A. C., Isik, A., Kaplan, A., Hizarci, S., & Durkaya, M. (2011). Visualization approach in teaching process of linear algebra. Procedia-Social and Behavioral Sciences, 15, 4040–4044.Google Scholar
  33. Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland [KMK] (2012). Bildungsstandards im Fach Mathematik für die Allgemeine Hochschulreife (Beschluss der Kultusministerkonferenzvom 18.10.2012). Available at: http://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2012/2012_10_18-Bildungsstandards-Mathe-Abi.pdf.
  34. Lagrange, J. B., Artigue, M., Laborde, C., & Trouche, L. (2001). A meta study on IC technologies in education. Towards a multidimensional framework to tackle their integration. In Proceedings of the 25 th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 1–111).Google Scholar
  35. Love, B., Hodge, A., Grandgenett, N., & Swift, A. W. (2014). Student learning and perceptions in a flipped linear algebra course. International Journal of Mathematical Education in Science and Technology, 45(3), 317–324.Google Scholar
  36. Matthews, D. (2016). “Do academic social networks share academics’ interests?”. Times Higher Education. Retrieved 2016-04-22. Google Scholar
  37. NCTM - National Council of Teachers of Mathematics (2000). Principles and Standards for School Mathematics. Reston, Virginia, USA.Google Scholar
  38. Oldenburg, R. (2016). A Transparent Rule Based CAS to support Formalizationof Knowledge. In the Proceedings of the 22nd Conference on Applications of Computer Algebra, ACA, August 2016, Kassel, Germany.Google Scholar
  39. Roegner, K., & Seiler, R. (2012). Das multimediale Lehr-und Lernsystem MUMIE/TUMULT in der universitären Mathematikausbildung. Hochschuldidaktik–Mathematik und Informatik. Symposiumsband „Verbesserung der Hochschullehre in Mathematik und Informatik”, 115–122.Google Scholar
  40. Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A. & Owens, K. (2016). Recent research on geometry education: an ICME-13 survey team report ZDM Mathematics Education 48(5), pp 691–719.Google Scholar
  41. Sierpinska, A. (2000). On Some Aspects of Students’ Thinking in Linear Algebra. In Dorier, J.-L. (Ed.). On the teaching of linear algebra. Mathematics Education Library, vol 23. Springer, Dordrecht.Google Scholar
  42. Stewart, S., & Thomas, M. O. J. (2004). The learning of linear algebra concepts: Instrumentation of CAS calculators. Proceedings of the 9th Asian Technology Conference in Mathematics (ATCM), Singapore, 377–386.Google Scholar
  43. Strang, G. (2005). Linear Algebra. Video Lectures. MIT OpenCourseWare. https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/. Last access 25.10.2017.
  44. Talbert, R. (2014). Inverting the linear algebra classroom. Primus, 24(5), 361–374.Google Scholar
  45. Tall, D. (2004). Thinking through three worlds of mathematics. In Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 281–288).Google Scholar
  46. Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational studies in mathematics, 12(2), 151–169.Google Scholar
  47. Trouche, L. (2005). Instrumental genesis, individual and social aspects. In The didactical challenge of symbolic calculators (pp. 197–230). Springer US.Google Scholar
  48. Turgut, M. & Drijvers, P. (2017). Students’ Thinking Modes and the Emergence of Signs in Learning Linear Algebra. In the Proceedings of ICME 13 Topical Survey (to appear).Google Scholar
  49. Varbanova, E. & Durcheva, M. (2016). Developing Competences in Higher Mathematics in a CAS Supported Learning Environment. In the Proceedings of the 22nd Conference on Applications of Computer Algebra, ACA, August 2016, Kassel, Germany.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations