A Stochastic Approach to Shortcut Bridging in Programmable Matter

  • Marta Andrés Arroyo
  • Sarah CannonEmail author
  • Joshua J. Daymude
  • Dana Randall
  • Andréa W. Richa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10467)


In a self-organizing particle system, an abstraction of programmable matter, simple computational elements called particles with limited memory and communication self-organize to solve system-wide problems of movement, coordination, and configuration. In this paper, we consider stochastic, distributed, local, asynchronous algorithms for “shortcut bridging,” in which particles self-assemble bridges over gaps that simultaneously balance minimizing the length and cost of the bridge. Army ants of the genus Eticon have been observed exhibiting a similar behavior in their foraging trails, dynamically adjusting their bridges to satisfy an efficiency tradeoff using local interactions [1]. Using techniques from Markov chain analysis, we rigorously analyze our algorithm, show it achieves a near-optimal balance between the competing factors of path length and bridge cost, and prove that it exhibits a dependence on the angle of the gap being “shortcut” similar to that of the ant bridges. We also present simulation results that qualitatively compare our algorithm with the army ant bridging behavior. The proposed algorithm demonstrates the robustness of the stochastic approach to algorithms for programmable matter, as it is a surprisingly simple generalization of a stochastic algorithm for compression [2].


  1. 1.
    Reid, C.R., Lutz, M.J., Powell, S., Kao, A.B., Couzin, I.D., Garnier, S.: Army ants dynamically adjust living bridges in response to a cost-benefit trade-off. Proc. Natl. Acad. Sci. 112(49), 15113–15118 (2015)CrossRefGoogle Scholar
  2. 2.
    Cannon, S., Daymude, J.J., Randall, D., Richa, A.W.: A Markov chain algorithm for compression in self-organizing particle systems. In: Proceedings of 2016 ACM Symposium on Principles of Distributed Computing (PODC 2016), pp. 279–288 (2016)Google Scholar
  3. 3.
    Camazine, S., Visscher, K.P., Finley, J., Vetter, S.R.: House-hunting by honey bee swarms: collective decisions and individual behaviors. Insectes Soc. 46(4), 348–360 (1999)CrossRefGoogle Scholar
  4. 4.
    Jeanson, R., Rivault, C., Deneubourg, J.L., Blanco, S., Fournier, R., Jost, C., Theraulaz, G.: Self-organized aggregation in cockroaches. Anim. Behav. 69(1), 169–180 (2005)CrossRefGoogle Scholar
  5. 5.
    Mohammed, A.M., Šulc, P., Zenk, J., Schulman, R.: Self-assembling DNA nanotubes to connect molecular landmarks. Nat. Nanotechnol. 12, 312–316 (2017)CrossRefGoogle Scholar
  6. 6.
    Woods, D.: Intrinsic universality and the computational power of self-assembly. In: Proceedings of Machines, Computations and Universality (MCU 2013), pp. 16–22 (2013)Google Scholar
  7. 7.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Reid, C.R., Latty, T.: Collective behaviour and swarm intelligence in slime moulds. FEMS Microbiol. Rev. 40(6), 798–806 (2016)CrossRefGoogle Scholar
  9. 9.
    Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009)CrossRefGoogle Scholar
  10. 10.
    Cheung, K.C., Demaine, E.D., Bachrach, J.R., Griffith, S.: Programmable assembly with universally foldable strings (moteins). IEEE Trans. Rob. 27(4), 718–729 (2011)CrossRefGoogle Scholar
  11. 11.
    Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012)CrossRefGoogle Scholar
  12. 12.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theoret. Comput. Sci. 407(1), 412–447 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)CrossRefGoogle Scholar
  15. 15.
    Chazelle, B.: Natural algorithms. In: Proceedings of 2009 ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 422–431 (2009)Google Scholar
  16. 16.
    Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)CrossRefGoogle Scholar
  17. 17.
    Chirikjian, G.: Kinematics of a metamorphic robotic system. In: Proceedings of 1994 International Conference on Robotics and Automation (ICRA 1994), vol. 1, pp. 449–455 (1994)Google Scholar
  18. 18.
    Walter, J.E., Welch, J.L., Amato, N.M.: Distributed reconfiguration of metamorphic robot chains. In: Proceedings of 2000 ACM Symposium on Principles of Distributed Computing (PODC 2000), pp. 171–180 (2000)Google Scholar
  19. 19.
    Walter, J.E., Brooks, M.E., Little, D.F., Amato, N.M.: Enveloping multi-pocket obstacles with hexagonal metamorphic robots. In: Proceedings of 2004 IEEE International Conference on Robotics and Automation (ICRA 2004), pp. 2204–2209 (2004)Google Scholar
  20. 20.
    Woods, D., Chen, H.-L, Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of 4th Innovations in Theoretical Computer Science Conference (ITCS 2013), pp. 353–354 (2013)Google Scholar
  21. 21.
    Chen, M., Xin, D., Woods, D.: Parallel computation using active self-assembly. Nat. Comput. 14(2), 225–250 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler, C.: Leader election and shape formation with self-organizing programmable matter. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 117–132. Springer, Cham (2015). doi: 10.1007/978-3-319-21999-8_8 CrossRefGoogle Scholar
  23. 23.
    Lynch, N.: Distributed Algorithms. Morgan Kauffman, San Francisco (1996)zbMATHGoogle Scholar
  24. 24.
    Baxter, R.J., Enting, I.G., Tsang, S.K.: Hard-square lattice gas. J. Stat. Phys. 22, 465–489 (1980)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Restrepo, R., Shin, J., Tetali, P., Vigoda, E., Yang, L.: Improving mixing conditions on the grid for counting and sampling independent sets. Probab. Theory Relat. Fields 156, 75–99 (2013)CrossRefzbMATHGoogle Scholar
  26. 26.
    Blanca, A., Galvin, D., Randall, D., Tetali, P.: Phase coexistence for the hard-core model on \(\mathbb{Z}^2\). In: 17th International Workshop on Randomization and Computation (RANDOM 2013), pp. 379–394 (2013)Google Scholar
  27. 27.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)zbMATHGoogle Scholar
  28. 28.
    Bruguière, C., Tiberghien, A., Clément, P.: Introduction. In: Bruguière, C., Tiberghien, A., Clément, P. (eds.) Topics and Trends in Current Science Education. CSER, vol. 1, pp. 3–18. Springer, Dordrecht (2014). doi: 10.1007/978-94-007-7281-6_1 CrossRefGoogle Scholar
  29. 29.
    Hastings, W.K.: Monte carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Universal coating for programmable matter. Theoret. Comput. Sci. 671, 56–68 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marta Andrés Arroyo
    • 1
  • Sarah Cannon
    • 2
    Email author
  • Joshua J. Daymude
    • 3
  • Dana Randall
    • 2
  • Andréa W. Richa
    • 3
  1. 1.University of GranadaGranadaSpain
  2. 2.College of ComputingGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Computer Science, CIDSEArizona State UniversityTempeUSA

Personalised recommendations