Advertisement

DNA-Templated Synthesis Optimization

  • Bjarke N. Hansen
  • Kim S. Larsen
  • Daniel Merkle
  • Alexei Mihalchuk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10467)

Abstract

In chemistry, synthesis is the process in which a target compound is produced in a step-wise manner from given base compounds. A recent, promising approach for carrying out these reactions is DNA-templated synthesis, since, as opposed to more traditional methods, this approach leads to a much higher effective molarity and makes much desired one-pot synthesis possible. With this method, compounds are tagged with DNA sequences and reactions can be controlled by bringing two compounds together via their tags. This leads to new cost optimization problems of minimizing the number of different tags or strands to be used under various conditions. We identify relevant optimization criteria, provide the first computational approach to automatically inferring DNA-templated programs, and obtain optimal and near-optimal results.

Notes

Acknowledgment

The second and third authors were supported in part by the Danish Council for Independent Research, Natural Sciences, grants DFF-1323-00247 and DFF-7014-00041.

References

  1. 1.
    Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 5187, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Andersen, J.L., Flamm, C., Hanczyc, M.M., Merkle, D.: Towards optimal DNA-templated computing. Int. J. Unconventional Comput. 11(3–4), 185–203 (2015)Google Scholar
  3. 3.
    Benson, E., Mohammed, A., Gardell, J., Masich, S., Czeizler, E., Orponen, P., Högberg, B.: DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015)CrossRefGoogle Scholar
  4. 4.
    Cardelli, L.: Two-domain DNA strand displacement. In: DCM, pp. 47–61 (2010)Google Scholar
  5. 5.
    de Werra, D., Pasche, C.: Paths, chains, and antipaths. Networks 19(1), 107–115 (1989)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Flajolet, P., Raoult, J., Vuillemin, J.: The number of registers required for evaluating arithmetic expressions. Theor. Comput. Sci. 9(1), 99–125 (1979)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Goodnow, R.A., Dumelin, C.E., Keefe, A.D.: DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2017)CrossRefGoogle Scholar
  8. 8.
    Gorska, K., Winssinger, N.: Reactions templated by nucleic acids: more ways to translate oligonucleotide-based instructions into emerging function. Angew. Chem. Int. Ed. 52(27), 6820–6843 (2013)CrossRefGoogle Scholar
  9. 9.
    Hansen, B.N., Mihalchuk, A.: DNA-templated computing. Master’s thesis, University of Southern Denmark, Denmark (2015). http://cheminf.imada.sdu.dk/dna/. Accessed 30 March 2017
  10. 10.
    He, Y., Liu, D.R.: A sequential strand-displacement strategy enables efficient six-step DNA-templated synthesis. J. Am. Chem. Soc. 133(26), 9972–9975 (2011)CrossRefGoogle Scholar
  11. 11.
    Hendrickson, J.B.: Systematic synthesis design. 6. Yield analysis and convergency. J. Am. Chem. Soc. 99, 5439–5450 (1977)CrossRefGoogle Scholar
  12. 12.
    Li, X., Liu, D.R.: DNA-templated organic synthesis: nature’s strategy for controlling chemical reactivity applied to synthetic molecules. Angew. Chem. Int. Ed. 43, 4848–4870 (2004)CrossRefGoogle Scholar
  13. 13.
    Meng, W., Muscat, R.A., McKee, M.L., Milnes, P.J., El-Sagheer, A.H., Bath, J., Davis, B.G., Brown, T., O’Reilly, R.K., Turberfield, A.J.: An autonomous molecular assembler for programmable chemical synthesis. Nat. Chem. 8(6), 542–548 (2016). doi: 10.1038/nchem.2495 CrossRefGoogle Scholar
  14. 14.
    Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. J. R. Soc. Interface 6(Suppl. 4), S419–S436 (2009)CrossRefGoogle Scholar
  15. 15.
    Strahler, A.: Hypsometric (area-altitude) analysis of erosional topography. Bull. Geol. Soc. Am. 63, 1117–1142 (1952)CrossRefGoogle Scholar
  16. 16.
    Wickham, S., Bath, J., Katsuda, Y., Endo, M., Hidaka, K., Sugiyama, H., Turberfield, A.: A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7, 169–173 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations