Simplifying Analyses of Chemical Reaction Networks for Approximate Majority

  • Anne Condon
  • Monir Hajiaghayi
  • David Kirkpatrick
  • Ján Maňuch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10467)

Abstract

Approximate Majority is a well-studied problem in the context of chemical reaction networks (CRNs) and their close relatives, population protocols: Given a mixture of two types of species with an initial gap between their counts, a CRN computation must reach consensus on the majority species. Angluin, Aspnes, and Eisenstat proposed a simple population protocol for Approximate Majority and proved correctness and \(O(\log n)\) time efficiency with high probability, given an initial gap of size \(\omega (\sqrt{n}\log n)\) when the total molecular count in the mixture is n. Motivated by their intriguing but complex proof, we provide simpler, and more intuitive proofs of correctness and efficiency for two bi-molecular CRNs for Approximate Majority, including that of Angluin et al. Key to our approach is to show how the bi-molecular CRNs essentially emulate a tri-molecular CRN with just two reactions and two species. Our results improve on those of Angluin et al. in that they hold even with an initial gap of \(\varOmega (\sqrt{n \log n})\). Our analysis approach, which leverages the simplicity of a tri-molecular CRN to ultimately reason about bi-molecular CRNs, may be useful in analyzing other CRNs too.

Keywords

Approximate Majority Chemical reaction networks Population protocols 

References

  1. 1.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  2. 2.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRefMATHGoogle Scholar
  3. 3.
    Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009). doi:10.1007/978-3-540-88869-7_27 CrossRefGoogle Scholar
  4. 4.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7, 615–633 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Nat. Sci. Rep. 2, 656 (2012)CrossRefGoogle Scholar
  6. 6.
    Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer, Heidelberg (2006). doi:10.1007/11864219_5 CrossRefGoogle Scholar
  7. 7.
    Cardelli, L., Kwiatkowska, M., Laurenti, L.: Programming discrete distributions with chemical reaction networks. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 35–51. Springer, Cham (2016). doi:10.1007/978-3-319-43994-5_3 CrossRefGoogle Scholar
  8. 8.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. PNAS 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  9. 9.
    Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.L.: Time-space trade-offs in population protocols. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2560–2579 (2017)Google Scholar
  10. 10.
    Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distrib. Comput. 21(2), 87–102 (2008)CrossRefMATHGoogle Scholar
  11. 11.
    Doerr, B., Goldberg, L.A., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing consensus with the power of two choices. In: Proceedings of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2011, pp. 149–158. ACM, New York (2011)Google Scholar
  12. 12.
    Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)CrossRefGoogle Scholar
  13. 13.
    Perron, E., Vasudevan, D., Vojnovic, M.: Using three states for binary consensus on complete graphs. In: Proceedings of the 28th IEEE Conference on Computer Communications (INFOCOM), pp. 2527–2535 (2009)Google Scholar
  14. 14.
    Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Determining majority in networks with local interactions and very small local memory. Distrib. Comput. 30(1), 1–16 (2017)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Cruise, J., Ganesh, A.: Probabilistic consensus via polling and majority rules. Queueing Syst. 78(2), 99–120 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Draief, M., Vojnovic, M.: Convergence speed of binary interval consensus. SIAM J. Control Optim. 50(3), 1087–1109 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Becchetti, L., Clementi, A.E.F., Natale, E., Pasquale, F., Trevisan, L.: Stabilizing consensus with many opinions. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 620–635 (2016)Google Scholar
  18. 18.
    Becchetti, L., Clementi, A., Natale, E., Pasquale, F., Silvestri, R., Trevisan, L.: Simple dynamics for plurality consensus. Distrib. Comput. 30, 1–14 (2016)MathSciNetGoogle Scholar
  19. 19.
    van Kampen, N.: Stochastic Processes in Physics and Chemistry (1997). (revised edition)Google Scholar
  20. 20.
    Bruguière, C., Tiberghien, A., Clément, P.: Introduction. In: Bruguière, C., Tiberghien, A., Clément, P. (eds.) Topics and Trends in Current Science Education. CSER, vol. 1, pp. 3–18. Springer, Dordrecht (2014). doi:10.1007/978-94-007-7281-6_1 CrossRefGoogle Scholar
  21. 21.
    Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23, 493–507 (1952)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    McDiarmid, C.: On the method of bounded differences. Lond. Soc. Lect. Note Ser. 141, 148–188 (1989)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anne Condon
    • 1
  • Monir Hajiaghayi
    • 1
  • David Kirkpatrick
    • 1
  • Ján Maňuch
    • 1
  1. 1.The Department of Computer ScienceUniversity of British ColumbiaVancouverCanada

Personalised recommendations