Skip to main content

Solitary Waves in the Nonlinear Dirac Equation

  • Chapter
  • First Online:
Nonlinear Systems, Vol. 1

Abstract

In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    With the notation \((N+1)D\) we want to denote that the system possesses \(N+1\) dimensions, with N spatial ones plus time.

  2. 2.

    Notice that this value of N is not related to the dimension of the NLD, although the same symbol is used in both cases.

References

  1. Ablowitz, M.J., Nixon, S.D., Zhu, Y.: Conical diffraction in honeycomb lattices. Phys. Rev. A 79, 053830 (2009)

    Article  ADS  Google Scholar 

  2. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  3. Ablowitz, M.J., Zhu, Y.: Evolution of Bloch-mode envelopes in two-dimensional generalized honeycomb lattices. Phys. Rev. A 82, 013840 (2010)

    Article  ADS  Google Scholar 

  4. Achilleos, V., Frantzeskakis, D.J., Kevrekidis, P.G., Pelinovsky, D.E.: Matter-wave bright solitons in spin-orbit coupled Bose–Einstein condensates. Phys. Rev. Lett. 110, 264101 (2013)

    Article  ADS  Google Scholar 

  5. Achilleos, V., Stockhofe, J., Kevrekidis, P.G., Frantzeskakis, D.J., Schmelcher, P.: Matter-wave dark solitons and their excitation spectra in spin-orbit coupled Bose–Einstein condensates. Europhys. Lett. 103(2), 20002 (2013)

    Article  ADS  Google Scholar 

  6. Alexander, J., Gardner, R., Jones, C.: A topological invariant arising in the stability analysis of traveling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Alfimov, G.L., Kevrekidis, P.G., Konotop, V.V., Salerno, M.: Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential. Phys. Rev. E 66, 046608 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Alvarez, A., Soler, M.: Energetic stability criterion for a nonlinear spinorial model. Phys. Rev. Lett. 50, 1230–1233 (1983)

    Article  ADS  Google Scholar 

  9. Alvarez, A., Soler, M.: Stability of the minimum solitary wave of a nonlinear spinorial model. Phys. Rev. D 34, 644–645 (1986)

    Article  ADS  Google Scholar 

  10. Aubry, S.: Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems. Physica D 216, 1–30 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Barashenkov, I.V., Pelinovsky, D.E., Zemlyanaya, E.V.: Vibrations and oscillatory instabilities of gap solitons. Phys. Rev. Lett. 80, 5117–5120 (1998)

    Article  ADS  Google Scholar 

  12. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bender, C.M., Berntson, B.K., Parker, D., Samuel, E.: Observation of PT phase transition in a simple mechanical system. Am. J. Phys. 81, 173–179 (2013)

    Article  ADS  Google Scholar 

  14. Bender, C.M., Fring, A., Günther, U., Jones, H.: Special issue: quantum physics with non-hermitian operators. J. Phys. A Math. Theory 45(44), 020201 (2012)

    Article  Google Scholar 

  15. Bender, C.M., Jones, H.F., Rivers, R.J.: Dual PT-symmetric quantum field theories. Phys. Lett. B 625, 333–340 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Berkolaiko, G., Comech, A.: On spectral stability of solitary waves of nonlinear dirac equation in 1D. Math. Model. Nat. Phenom. 7, 13–31 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Berkolaiko, G., Comech, A., Sukhtayev, A.: Vakhitov–Kolokolov and energy vanishing conditions for linear instability of solitary waves in models of classical self-interacting spinor fields. Nonlinearity 28(3), 577–592 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Berthier, A., Georgescu, V.: On the point spectrum of Dirac operators. J. Funct. Anal. 71(2), 309–338 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bjorken, J., Drell, S.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  21. Blanchard, P., Stubbe, J., Vázquez, L.: Stability of nonlinear spinor fields with application to the Gross–Neveu model. Phys. Rev. D 36, 2422–2428 (1987)

    Article  ADS  Google Scholar 

  22. Bogolubsky, I.L.: On spinor soliton stability. Phys. Lett. A 73, 87–90 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bournaveas, N.: Local existence for the Maxwell–Dirac equations in three space dimensions. Commun. Partial Differ. Equ. 21(5–6), 693–720 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Boussaïd, N.: Stable directions for small nonlinear Dirac standing waves. Commun. Math. Phys. 268(3), 757–817 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Boussaïd, N.: On the asymptotic stability of small nonlinear Dirac standing waves in a resonant case. SIAM J. Math. Anal. 40(4), 1621–1670 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Boussaïd, N., Comech, A.: On spectral stability of the nonlinear Dirac equation. J. Funct. Anal. 271(6), 1462–1524 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Boussaïd, N., Comech, A.: Spectral stability of weakly relativistic solitary waves of the Dirac equation with the Soler-type nonlinearity (2016)

    Google Scholar 

  28. Boussaïd, N., Comech, A.: Spectral stability of weakly relativistic solitary waves of the Dirac equation with the Soler-type nonlinearity (2017). To appear

    Google Scholar 

  29. Boussaïd, N., Cuccagna, S.: On stability of standing waves of nonlinear Dirac equations. Commun. Part. Diff. Equ. 37, 1001–1056 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001)

    MATH  Google Scholar 

  31. Braun, O.M., Kivshar, Y.S.: The Frenkel–Kontorova Model. Springer Nature (2004)

    Google Scholar 

  32. Buslaev, V.S., Perel\(^{\prime }\)man, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations. In: Nonlinear Evolution Equations. Am. Math. Soc. Trans. Ser. (Am. Math. Soc., Providence, RI.) 164(2), 75–98 (1995)

    Google Scholar 

  33. Candy, T.: Global existence for an \(L^2\) critical nonlinear Dirac equation in one dimension. Adv. Differ. Equ. 16(7–8), 643–666 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Carretero-González, R., Talley, J.D., Chong, C., Malomed, B.A.: Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation. Physica D 216, 77–89 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  ADS  MATH  Google Scholar 

  36. Cazenave, T., Vazquez, L.: Existence of localized solutions for a classical nonlinear Dirac field. Commun. Math. Phys. 105, 35–47 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Chugunova, M., Pelinovsky, D.: Block-diagonalization of the symmetric first-order coupled-mode system. SIAM J. Appl. Dyn. Syst. 5(1), 66–83 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Coleman, S.: Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D 11, 2088–2097 (1975)

    Article  ADS  Google Scholar 

  39. Comech, A., Guan, M., Gustafson, S.: On linear instability of solitary waves for the nonlinear Dirac equation. Ann. Inst. H. Poincaré - AN 31, 639–654 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Comech, A., Phan, T.V., Stefanov, A.: Asymptotic stability of solitary waves in generalized Gross-Neveu model. Ann. Inst. H. Poincaré - AN 34, 157–196 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Comech, A., Stuart, D.: Small solitary waves in the Dirac–Maxwell system (2012). ArXiv:1210.7261

  42. Conduit, G.J.: Line of Dirac monopoles embedded in a Bose–Einstein condensate. Phys. Rev. A 86, 021605(R) (2012)

    Article  ADS  Google Scholar 

  43. Contreras, A., Pelinovsky, D.E., Shimabukuro, Y.: L\(^2\) orbital stability of Dirac solitons in the massive Thirring model. Commun. Partial Differ. Equ. 41, 227–255 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Cooper, F., Khare, A., Mihaila, B., Saxena, A.: Solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity. Phys. Rev. E 82, 036604 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  45. Cuccagna, S., Tarulli, M.: On stabilization of small solutions in the nonlinear Dirac equation with a trapping potential. J. Math. Anal. Appl. 436(2), 1332–1368 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Cuevas-Maraver, J., Kevrekidis, P., Saxena, A., Cooper, F., Mertens, F.: Solitary waves in the nonlinear Dirac equation at the continuum limit: stability and dynamics. In: Ordinary and Partial Differential Equations. Nova Science Publishers, New York (2015)

    Google Scholar 

  47. Cuevas-Maraver, J., Kevrekidis, P.G., Saxena, A.: Solitary waves in a discrete nonlinear Dirac equation. J. Phys. A: Math. Theory 48, 055204 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Cuevas-Maraver, J., Kevrekidis, P.G., Saxena, A., Comech, A., Lan, R.: Stability of solitary waves and vortices in a 2D nonlinear Dirac model. Phys. Rev. Lett. 116, 214101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  49. Cuevas-Maraver, J., Kevrekidis, P.G., Saxena, A., Cooper, F., Khare, A., Comech, A., Bender, C.M.: Solitary waves of a PT-symmetric nonlinear Dirac equation. IEEE J. Sel. Top. Quantum Electron. 22, 5000109 (2016)

    Article  Google Scholar 

  50. Cuevas-Maraver, J., Kevrekidis, P.G., Williams, F. (eds.): The Sine-Gordon Model and its Applications. Springer International Publishing (2014)

    Google Scholar 

  51. Dalibard, J., Gerbier, F., Juzeliunas, G., Öhberg, P.: Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011)

    Article  ADS  Google Scholar 

  52. Darby, D., Ruijgrok, T.W.: A noncompact gauge group for the Dirac equation. Acta Phys. Polon. B 10, 959–973 (1979)

    MathSciNet  Google Scholar 

  53. Dauxois, T., Peyrard, M.: Physics of Solitons. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  54. De Wit, B., Smith, J.: Field Theory in Particle Physics. North Holland Physics Publishing, New York (1986)

    Google Scholar 

  55. Degasperis, A., Wabnitz, S., Aceves, A.: Bragg grating rogue wave. Phys. Lett. A 379, 1067–1070 (2015)

    Article  MATH  Google Scholar 

  56. Derrick, G.H.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5, 1252–1254 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  57. Dirac, P.: The quantum theory of the electron. I. Proc. R. Soc. Lond. A 117, 610–624 (1928)

    Article  ADS  MATH  Google Scholar 

  58. Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  59. Escobedo, M., Vega, L.: A semilinear Dirac equation in \(H^s({ R}^3)\) for \(s>1\). SIAM J. Math. Anal. 28(2), 338–362 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  60. Esteban, M.J., Georgiev, V., Séré, É.: Stationary solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac equations. Calc. Var. Partial Differ. Equ. 4(3), 265–281 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  61. Esteban, M.J., Lewin, M., Séré, É.: Variational methods in relativistic quantum mechanics. Bull. Amer. Math. Soc. (N.S.) 45(4), 535–593 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Esteban, M.J., Séré, E.: Stationary states of the nonlinear Dirac equation: a variational approach. Commun. Math. Phys. 171, 323–350 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Esteban, M.J., Séré, É.: Solutions of the Dirac–Fock equations for atoms and molecules. Commun. Math. Phys. 203(3), 499–530 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Esteban, M.J., Séré, E.: Nonrelativistic limit of the Dirac–Fock equations. Ann. Henri Poincaré 2(5), 941–961 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Esteban, M.J., Séré, É.: Dirac–Fock models for atoms and molecules and related topics. In: XIVth International Congress on Mathematical Physics, pp. 21–28. World Scientific Publishing, Hackensack, NJ (2005)

    Google Scholar 

  66. Evans, J.: Nerve axon equations, I: Linear approximations. Indiana U. Math. J. 21, 877–955 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  67. Evans, J.: Nerve axon equations, II: Stability at rest. Indiana U. Math. J. 22, 75–90 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  68. Evans, J.: Nerve axon equations, III: Stability of the nerve impulse. Indiana U. Math. J. 22, 577–594 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  69. Evans, J.: Nerve axon equations, IV: The stable and unstable impulse. Indiana U. Math. J. 24, 1169–1190 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  70. Fedosov, B.V.: Index theorems. In: Partial Differential Equations, VIII Encyclopaedia Mathematical Sciences, vol. 65. Springer-Verlag, Berlin (1996)

    Chapter  Google Scholar 

  71. Feng, B., Sugino, O., Liu, R.Y., Zhang, J., Yukawa, R., Kawamura, M., Iimori, T., Kim, H., Hasegawa, Y., Li, H., Chen, L., Wu, K., Kumigashira, H., Komori, F., Chiang, T.C., Meng, S., Matsuda, I.: Dirac fermions in borophene. Phys. Rev. Lett. 118, 096401 (2017)

    Article  ADS  Google Scholar 

  72. Fialko, O., Brand, J., Zülicke, U.: Hidden long-range order in a two-dimensional spin-orbit coupled bose gas. Phys. Rev. A 85, 051605(R) (2012)

    Article  ADS  Google Scholar 

  73. Finkelstein, R., Lelevier, R., Ruderman, M.: Nonlinear spinor fields. Phys. Rev. 83, 326–332 (1951)

    Article  ADS  MATH  Google Scholar 

  74. Fring, A., Jones, H., Znojil, M.: Papers dedicated to the subject of the 6th international workshop on pseudo-Hermitian Hamiltonians in quantum physics (PHHQPVI). J. Phys. A: Math. Theory 41(44) (2008)

    Article  ADS  MathSciNet  Google Scholar 

  75. Galindo, A.: A remarkable invariance of classical Dirac Lagrangians. Lett. Nuovo Cimento 20, 210–212 (1977)

    Article  MathSciNet  Google Scholar 

  76. Georgiev, V., Ohta, M.: Nonlinear instability of linearly unstable standing waves for nonlinear Schrödinger equations. J. Math. Soc. Jpn. 64(2), 533–548 (2012)

    Article  MATH  Google Scholar 

  77. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1), 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  78. Gross, D.J., Neveu, A.: Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev. D 10, 3235–3253 (1974)

    Article  ADS  Google Scholar 

  79. Gross, L.: The Cauchy problem for the coupled Maxwell and Dirac equations. Commun. Pure Appl. Math. 19, 1–15 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  80. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Article  ADS  Google Scholar 

  81. Haddad, L.H., Carr, L.D.: The nonlinear Dirac equation in Bose–Einstein condensates: vortex solutions and spectra in a weak harmonic trap. New J. Phys. 17, 113011 (2015)

    Article  ADS  Google Scholar 

  82. Haddad, L.H., O’Hara, K.M., Carr, L.D.: Nonlinear Dirac equation in Bose–Einstein condensates: preparation and stability of relativistic vortices. Phys. Rev. A 91, 043609 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  83. Haddad, L.H., Weaver, C.M., Carr, L.D.: The nonlinear Dirac equation in Bose–Einstein condensates: I. Relativistic solitons in armchair nanoribbon optical lattices. New J. Phys. 17, 063044 (2015)

    MathSciNet  Google Scholar 

  84. Hadzievski, L., Maluckov, A., Stepić, M., Kip, D.: Power controlled soliton stability and steering in lattices with saturable nonlinearity. Phys. Rev. Lett. 93, 033901 (2004)

    Article  ADS  Google Scholar 

  85. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)

    MATH  Google Scholar 

  86. Hamner, C., Zhang, Y., Khamehchi, M.A., Davis, M.J., Engels, P.: In a one-dimensional optical lattice, spin-orbit-coupled Bose–Einstein condensates. Phys. Rev. Lett. 114, 070401 (2014)

    Article  Google Scholar 

  87. Heisenberg, W.: Quantum theory of fields and elementary particles. Rev. Mod. Phys. 29, 269–278 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. Herring, G., Carr, L.D., Carretero-González, R., Kevrekidis, P.G., Frantzeskakis, D.J.: Radially symmetric nonlinear states of harmonically trapped Bose–Einstein condensates. Phys. Rev. A 77, 023625 (2008)

    Article  ADS  Google Scholar 

  89. Huh, H.: Global solutions to Gross–Neveu equation. Lett. Math. Phys. 103(8), 927–931 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Ivanenko, D.D.: Notes to the theory of interaction via particles. Sov. Phys. JETP 13, 141 (1938)

    MathSciNet  Google Scholar 

  91. Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46(3), 583–611 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  92. Johansson, M., Kivshar, Y.S.: Discreteness-induced oscillatory instabilities of dark solitons. Phys. Rev. Lett. 82, 85–88 (1999)

    Article  ADS  Google Scholar 

  93. Jones, C.: Stability of the travelling wave solutions of the Fitzhugh–Nagumo system. Trans. AMS 286(2), 431–469 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  94. Kapitula, T., Sandstede, B.: Edge bifurcations for near integrable systems via Evans function techniques. SIAM J. Math. Anal. 33(5), 1117–1143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  95. Kartashov, Y.V., Konotop, V.V., Abdullaev, F.K.: Gap solitons in a spin-orbit-coupled Bose–Einstein condensate. Phys. Rev. Lett. 111, 060402 (2013)

    Article  ADS  Google Scholar 

  96. Kawakami, T., Mizushima, T., Nitta, M., Machida, K.: Stable skyrmions in SU(2) gauged Bose–Einstein condensates. Phys. Rev. Lett. 109, 015301 (2012)

    Article  ADS  Google Scholar 

  97. Kestelman, H.: Anticommuting linear transformations. Canad. J. Math. 13, 614–624 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  98. Kevrekidis, P.G.: The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives, vol. 232. Springer-Verlag, Heidelberg (2009)

    MATH  Google Scholar 

  99. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R.: The defocusing nonlinear Schrödinger equation: from dark solitons, to vortices and vortex rings. SIAM, Philadelphia (2015)

    Book  MATH  Google Scholar 

  100. Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer-Verlag, Berlin (2009)

    MATH  Google Scholar 

  101. Kivshar, Y.S., Agrawal, G.P.: Optical solitons: from fibers to photonic crystals. Academic Press, San Diego (2003)

    Google Scholar 

  102. Klaiman, S., Günther, U., Moiseyev, N.: Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  103. LeBlanc, L.J., Beeler, M.C., Jiménez-García, K., Perry, A.R., Sugawa, S., Williams, R.A., Spielman, I.B.: Direct observation of zitterbewegung in a Bose–Einstein condensate. New J. Phys. 15, 073011 (2013)

    Article  Google Scholar 

  104. Lee, S.Y., Kuo, T.K., Gavrielides, A.: Exact localized solutions of two-dimensional field theories of massive fermions with Fermi interactions. Phys. Rev. D 12, 2249–2253 (1975)

    Article  ADS  Google Scholar 

  105. Lee, Y.S., McLean, A.D.: Relativistic effects on \({R}_e\) and \({D}_e\) in AgH and AuH from all-electron Dirac–Hartree–Fock calculations. J. Chem. Phys. 76(1), 735–736 (1982)

    Google Scholar 

  106. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. Lin, Y.J., Jiménez-García, K., Spielman, I.B.: Spin-orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011)

    Article  ADS  Google Scholar 

  108. Machihara, S., Nakamura, M., Nakanishi, K., Ozawa, T.: Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal. 219(1), 1–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  109. Machihara, S., Nakanishi, K., Tsugawa, K.: Well-posedness for nonlinear Dirac equations in one dimension. Kyoto J. Math. 50(2), 403–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  110. MacKay, R.S., Aubry, S.: Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 1623–1643 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS\(_2\): a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  112. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in PT-symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)

    Article  ADS  Google Scholar 

  113. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: PT-symmetric periodic optical potentials. Int. J. Theor. Phys. 50, 1019–1041 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  114. Marini, A., Longhi, S., Biancalana, F.: Optical simulation of neutrino oscillations in binary waveguide arrays. Phys. Rev. Lett. 113, 150401 (2014)

    Google Scholar 

  115. Mathieu, P., Morris, T.F.: Charged spinor solitons. Can. J. Phys. 64(3), 232–238 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. Melvin, T.R.O., Champneys, A.R., Kevrekidis, P.G., Cuevas, J.: Radiationless traveling vaves in saturable nonlinear Schrödinger lattices. Phys. Rev. Lett. 97, 124101 (2006)

    Article  ADS  Google Scholar 

  117. Merkl, M., Jacob, A., Zimmer, F.E., Öhberg, P., Santos, L.: Chiral confinement in quasirelativistic Bose–Einstein condensates. Phys. Rev. Lett. 104, 073603 (2010)

    Article  ADS  Google Scholar 

  118. Merle, F.: Existence of stationary states for nonlinear Dirac equations. J. Differ. Equ. 74, 50–68 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. Merle, F.: Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity. Commun. Math. Phys. 129, 223–240 (1990)

    Article  ADS  MATH  Google Scholar 

  120. Mertens, F.G., Quintero, N.R., Cooper, F., Khare, A., Saxena, A.: Nonlinear dirac equation solitary waves in external fields. Phys. Rev. E 86, 046602 (2012)

    Article  ADS  Google Scholar 

  121. Ng, W., Parwani, R.: Nonlinear Dirac equations. SIGMA 3, 023 (2009)

    MathSciNet  MATH  Google Scholar 

  122. Pauli, W.: Contributions mathématiques à la théorie des matrices de Dirac. Ann. Inst. H. Poincaré 6, 109–136 (1936)

    MathSciNet  MATH  Google Scholar 

  123. Pego, R.L., Weinstein, M.I.: Eigenvalues, and instabilities of solitary waves. Philos. Trans. Roy. Soc. Lond. Ser. A 340(1656), 47–94 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  124. Peleg, O., Bartal, G., Freedman, B., Manela, O., Segev, M., Christodoulides, D.N.: Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007)

    Article  ADS  Google Scholar 

  125. Pelinovsky, D.: Survey on global existence in the nonlinear Dirac equations in one spatial dimension. In: Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, B26, pp. 37–50. Res. Inst. Math. Sci. (RIMS), Kyoto (2011)

    Google Scholar 

  126. Pelinovsky, D., Shimabukuro, Y.: Transverse instability of line solitons in massive Dirac equations. J. Nonlinear Sci. 26, 365–403 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  127. Pelinovsky, D.E., Shimabukuro, Y.: Orbital stability of Dirac solitons. Lett. Math. Phys. 104, 21–41 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  128. Pelinovsky, D.E., Stefanov, A.: Asymptotic stability of small gap solitons in nonlinear Dirac equations. J. Math. Phys. 53, 073705 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  129. Peng, B., Özdemir, S.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014)

    Article  Google Scholar 

  130. Pethick, C.J., Smith, H.: Bose–Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  131. Pitaevskii, L.P., Stringari, S.: Bose–Einstein condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  132. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  133. Qu, C., Hamner, C., Gong, M., Zhang, C., Engels, P.: Observation of zitterbewegung in a spin-orbit-coupled Bose–Einstein condensate. Phys. Rev. A 88, 021064(R) (2013)

    Article  Google Scholar 

  134. Quiney, H.M., Glushkov, V.N., Wilson, S.: The Dirac equation in the algebraic approximation. IX. Matrix Dirac–Hartree–Fock calculations for the HeH and BeH ground states using distributed gaussian basis sets. Int. J. Quantum Chem. 99(6), 950–962 (2004)

    Article  Google Scholar 

  135. Rañada, A.F., Rañada, M.F., Soler, M., Vázquez, L.: Classical electrodynamics of a nonlinear Dirac field with anomalous magnetic moment. Phys. Rev. D 10(2), 517–525 (1974)

    Article  ADS  Google Scholar 

  136. Radić, J., Sedrakyan, T.A., Spielman, I.B., Galitski, V.: Vortices in spin-orbit-coupled Bose–Einstein condensates. Phys. Rev. A 84, 063604 (2011)

    Article  ADS  Google Scholar 

  137. Ramachandhran, B., Opanchuk, B., Liu, X.J., Pu, H., Drummond, P.D., Hu, H.: Half-quantum vortex state in a spin-orbit-coupled Bose–Einstein condensate. Phys. Rev. A 85, 023606 (2012)

    Article  ADS  Google Scholar 

  138. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978)

    Google Scholar 

  139. Regensburger, A., Bersch, C., Miri, M.A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)

    Article  ADS  Google Scholar 

  140. Rota Nodari, S.: Perturbation method for particle-like solutions of the Einstein–Dirac equations. Ann. Henri Poincaré 10(7), 1377–1393 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  141. Rota Nodari, S.: Perturbation method for particle-like solutions of the Einstein–Dirac–Maxwell equations. C. R. Math. Acad. Sci. Paris 348(13–14), 791–794 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  142. Ruschhaupt, A., Delgado, F., Muga, J.G.: Physical realization of PT-symmetric potential scattering in a planar slab waveguide. J. Phys. A: Math. Gen. 38, L171–L176 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  143. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Article  Google Scholar 

  144. Sakaguchi, H., Li, B., Malomed, B.A.: Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose–Einstein condensates in free space. Phys. Rev. E 89, 032920 (2014)

    Article  ADS  Google Scholar 

  145. Schindler, J., Li, A., Zheng, M.C., Ellis, F.M., Kottos, T.: Experimental study of active LRC circuits with PT-symmetries. Phys. Rev. A 84, 040101 (2011)

    Article  ADS  Google Scholar 

  146. Schindler, J., Lin, Z., Lee, J.M., Ramezani, H., Ellis, F.M., Kottos, T.: PT-symmetric electronics. J. Phys. A: Math. Theory 45, 444029 (2012)

    Article  ADS  MATH  Google Scholar 

  147. Selberg, S., Tesfahun, A.: Low regularity well-posedness for some nonlinear Dirac equations in one space dimension. Differ. Integr. Equ. 23(3–4), 265–278 (2010)

    MathSciNet  MATH  Google Scholar 

  148. Shampine, L.F., Hosea, M.E.: Analysis and implementation of TR-BDF2. Appl. Num. Math. 20, 21–37 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  149. Shao, S., Quintero, N.R., Mertens, F.G., Cooper, F., Khare, A., Saxena, A.: Stability of solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity. Phys. Rev. E 90, 032915 (2014)

    Article  ADS  Google Scholar 

  150. Sigal, I.M.: Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions. Commun. Math. Phys. 153(2), 297–320 (1993)

    Article  ADS  MATH  Google Scholar 

  151. Soffer, A., Weinstein, M.I.: Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math. 136(1), 9–74 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  152. Soler, M.: Classical, stable, nonlinear spinor field with positive rest energy. Phys. Rev. D 1, 2766–2769 (1970)

    Article  ADS  Google Scholar 

  153. Soler, M.: Classical electrodynamics for a nonlinear spinor field: perturbative and exact approaches. Phys. Rev. D 8, 3424–3429 (1973)

    Article  ADS  Google Scholar 

  154. Strauss, W.A., Vázquez, L.: Stability under dilations of nonlinear spinor fields. Phys. Rev. D 34(2), 641–643 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  155. Stuart, D.: Existence and Newtonian limit of nonlinear bound states in the Einstein–Dirac system. J. Math. Phys. 51(3), 032501 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  156. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation. Springer-Verlag, New York (1999)

    MATH  Google Scholar 

  157. Thaller, B.: The Dirac Equation. Texts and Monographs in Physics. Springer-Verlag, Berlin (1992)

    Google Scholar 

  158. Thirring, W.E.: A soluble relativistic field theory. Ann. Phys. 3, 91–112 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  159. Tran, T.X., Longhi, S., Biancalana, F.: Optical analogue of relativistic Dirac solitons in binary waveguide arrays. Ann. Phys. 340, 179–187 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  160. Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  161. Vakhitov, N.G., Kolokolov, A.A.: Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron. 16, 783–789 (1973)

    Article  ADS  Google Scholar 

  162. Vázquez, L.: Localised solutions of a non-linear spinor field. J. Phys. A: Math. Gen. 10, 1361–1368 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  163. Vicencio, R.A., Johansson, M.: Discrete soliton mobility in two-dimensional waveguide arrays with saturable nonlinearity. Phys. Rev. E 73, 046602 (2006)

    Article  ADS  Google Scholar 

  164. Visscher, L., Dyall, K.: Dirac–Fock atomic enectronic structore calculations using different nuclear charge distributions. At. Data Nucl. Data Tables 67(2), 207–224 (1997)

    Article  ADS  Google Scholar 

  165. van der Waerden, B.: Group Theory and Quantum Mechanics. Springer-Verlag, New York (1974)

    Book  MATH  Google Scholar 

  166. Wakano, M.: Intensely localized solutions of the classical Dirac–Maxwell field equations. Prog. Theory Phys. 35, 1117–1141 (1966)

    Article  ADS  Google Scholar 

  167. Wehling, T.O., Black-Schaffer, A.M., Balatsky, A.V.: Dirac materials. Adv. Phys. 63, 1–76 (2014)

    Article  ADS  Google Scholar 

  168. Xu, J., Shao, S., Tang, H.: Numerical methods for nonlinear Dirac equation. J. Comput. Phys. 245, 131–149 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  169. Xu, X.Q., Han, J.H.: Spin-orbit coupled Bose–Einstein condensate under rotation. Phys. Rev. Lett. 107, 200401 (2011)

    Article  ADS  Google Scholar 

  170. Xu, Y., Zhang, Y., Wu, B.: Bright solitons in spin-orbit-coupled Bose–Einstein condensates. Phys. Rev. A 87, 013614 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research of Andrew Comech was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Foundation for Sciences (project 14-50-00150). J.C.-M. thanks financial support from MAT2016-79866-R project (AEI/FEDER, UE). P.G.K. gratefully acknowledges the support of NSF-PHY-1602994, the Alexander von Humboldt Foundation, the Stavros Niarchos Foundation via the Greek Diaspora Fellowship Program, and the ERC under FP7, Marie Curie Actions, People, International Research Staff Exchange Scheme (IRSES-605096). This work was supported in part by the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Cuevas-Maraver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas-Maraver, J., Boussaïd, N., Comech, A., Lan, R., Kevrekidis, P.G., Saxena, A. (2018). Solitary Waves in the Nonlinear Dirac Equation. In: Carmona, V., Cuevas-Maraver, J., Fernández-Sánchez, F., García- Medina, E. (eds) Nonlinear Systems, Vol. 1. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-66766-9_4

Download citation

Publish with us

Policies and ethics