Advertisement

On the Numerical Approximation to Generalized Ostrovsky Equations: I

A Numerical Method and Computation of Solitary-Wave Solutions
  • Ángel Durán
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

In the present chapter, two numerical procedures to simulate the dynamics of generalized versions of the Ostrovsky equation are presented. First, a numerical method to approximate the corresponding periodic initial-value problem is introduced. The scheme consists of a spatial discretization based on Fourier collocation methods, which is justified by the presence of nonlocal terms. Due to the stiff character of the semidiscretization in space, the time integration is performed with a fourth-order, diagonally implicit Runge-Kutta method, which provides additional theoretical and computational properties. The second point treated in this chapter concerns the solitary-wave solutions of the equations. Their numerical generation is carried out by using a Petviashvili-type method, along with acceleration techniques. The resulting procedure is able to compute both classical and generalized solitary waves in an efficient way. The speed-amplitude relation and the asymptotic behaviour of the waves are studied from the computed profiles.

Keywords

Generalized Ostrovsky equation Fourier collocation Petviashvili-type methods Solitary waves 

Notes

Acknowledgements

This work was supported by Spanish Ministerio de Economía y Competitividad under the Research Grant MTM2014-54710-P. The author would like to thank Professors V. Dougalis, D. Dutykh and D. Mitsotakis for fruitful discussions and so important suggestions.

References

  1. 1.
    Ablowitz, M.J., Musslimani, Z.H.: Spectral renormalization method for computing self-localized solutions to nonlinear systems. Opt. Lett. 30, 2140–2142 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Álvarez, J., Durán, A.: Petviashvili type methods for traveling wave computations: I. Analysis of convergence. J. Comput. Appl. Math. 266, 39–51 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Álvarez, J., Durán, A.: Petviashvili type methods for traveling wave computations: II. Acceleration techniques. Math. Comput. Simul. 123, 19–36 (2016)Google Scholar
  4. 4.
    Apel, J.R., Ostrovsky, L.A., Stepanyants, Y.A., Lynch, J.F.: Internal solitons in the ocean. WHOI Tech. Rep. (2006)Google Scholar
  5. 5.
    Benilov, E.S.: On the surface waves in a shallow channel with an uneven bottom. Stud. Appl. Math. 87, 1–14 (1992)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bona, J.L., Dougalis, V.A., Mitsotakis, D.E.: Numerical solution of KdV-KdV systems of Boussinesq equations I. The numerical scheme and generalized solitary waves. Math. Comput. Simul. 74, 214–228 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Boyd, J.P.: Weakly nonlocal solitary waves and beyond-all-orders asymptotics: generalized solitons and hyperasymptotic perturbation theory. In: Mathematics and Its Applications, vol. 442. Kluwer, Amsterdam (1998)CrossRefGoogle Scholar
  8. 8.
    Boyd, J.P., Chen, G.Y.: Five regimes of the quasi-cnoidal, steadily translating waves of the rotation-modified Korteweg-de Vries (“Ostrovsky”) equation. Wave Motion 35, 141–155 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brezinski, C.: Convergence acceleration during the 20th century. J. Comput. Appl. Math. 122, 1–21 (1975)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cano, B.: Conserved quantities of some Hamiltonian wave equations after full discretizations. Numer. Math. 103, 197–223 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York, Heidelberg, Berlin (1988)CrossRefGoogle Scholar
  12. 12.
    Chen, G.Y., Boyd, J.P.: Analytical and numerical studies of weakly nonlocal solitary waves of the rotation-modified Korteweg-de Vries equation. Physica D 155, 201–222 (2002)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Choudhury, S.R.: Solitary-wave families of the Ostrovsky equation: an approach via reversible systems theory and normal forms. Chaos, Solitons Fract. 33, 1468–1479 (2007)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Choudhury, S.R., Ivanov, R.I., Liu, Y.: Hamiltonian formulation, nonintegrability and local bifurcations for the Ostrovsky equation. Chaos, Solitons Fract. 34, 544–550 (2007)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Costanzino, N., Manukian, V., Jones, C.K.R.T.: Solitary waves of the regularized short pulse and Ostrovsky equations. SIAM J. Math. Anal. 41(5), 2088–2106 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dougalis, V.A., Durán, A., López-Marcos, M.A., Mitsotakis, D.E.: A numerical study of the stability of solitary waves of the Bona-Smith family of Boussinesq systems. J. Nonlinear Sci. 17, 569–607 (2007)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Dougalis, V.A., Durán, A., Mitsotakis, D.E.: Numerical solution of the Benjamin equation. Wave Motion 52, 194–215 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Durán, A., Sanz-Serna, J.M.: The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20, 235–261 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    de Frutos, J., Sanz-Serna, J.M.: An easily implementable fourth-order method for the time integration of wave problems. J. Comput. Phys. 103, 160–168 (1992)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Galkin, V.N., Stepanyants, Y.A.: On the existence of stationary solitary waves in a rotating fluid. J. Appl. Math. Mech. 55, 939–943 (1991)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gilman, O.A., Grimshaw, R., Stepanyants, Y.A.: Approximate analytical and numerical solutions of the stationary Ostrovsky equation. Stud. Appl. Math. 95, 115–126 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gilman, O.A., Grimshaw, R., Stepanyants, Y.A.: Dynamics of internal solitary waves in a rotating fluid. Dyn. Atm. Ocean 23(1), 403–411 (1995)ADSGoogle Scholar
  23. 23.
    Grimshaw, R.H.: Evolution equations for weakly nonlinear, long internal waves in a rotating fluid. Stud. Appl. Math. 73, 1–33 (1985)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Grimshaw, R.H.: Internal solitary waves. In: Liu (ed.) Advances in Coastal and Ocean Engineering, pp. 1–30. World Scientific, Singapore (1997)Google Scholar
  25. 25.
    Grimshaw, R.H., He, J.M., Ostrovsky, L.A.: Terminal damping of a solitary wave due to radiation in rotational systems. Stud. Appl. Math. 10, 197–210 (1998)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Grimshaw, R.H., Helfrich, K.R., Johnson, E.R.: Experimental study of the effect of rotation on nonlinear internal waves. Phys. Fluids 25, 0566,021–05660,223 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Grimshaw, R.H., Ostrovsky, L.A., Shira, V.I., Stepanyants, Y.A.: Long nonlinear surface and internal gravity waves in a rotating ocean. Surv. Gheophys. 19, 289–338 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. In: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, New York, Heidelberg, Berlin (2004)Google Scholar
  29. 29.
    Helfrich, K.R.: Decay and return of internal solitary waves with rotation. Phys. Fluids 19, O26,601 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Helfrich, K.R., Melville, W.K.: Long nonlinear internal waves. Ann. Rev. Fluid Mech. 38, 395–425 (2006)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Hunter, J.K.: Numerical solutions of some nonlinear dispersive wave equations. In: E.L. Allgower (ed.), K.G.E. Computational Solutions of Nonlinear Systems of Equations. Lectures in Applied Mathematics, vol. 26, pp. 301–316. AMS, Providence (1990)Google Scholar
  32. 32.
    Iooss, G., Adelmeyer, M.: Topics in Bifurcation Theory and Applications. World Scientific, Singapore (1998)zbMATHGoogle Scholar
  33. 33.
    Isaza, P., Mejía, J.: Global Cauchy problem for the Ostrovsky equation. Nonl. Anal. 67, 1482–1503 (2007)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Jbilous, K., Sadok, H.: Vector extrapolation methods. applications and numerical comparisons. J. Comput. Appl. Math. 122, 149–165 (2000)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Lakoba, T., Yang, Y.: A generalized Petviashvili method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity. J. Comput. Phys. 226, 1668–1692 (2007)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Lakoba, T., Yang, Y.: A mode elimination technique to improve convergence of iteration methods for finding solitary waves. J. Comput. Phys. 226, 1693–1709 (2007)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Leonov, A.I.: The effect of earth rotation on the propagation of weak nonlinear surface and internal long oceanic waves. Annal. New York Acad. Sci. 373, 150–159 (1981)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Levandosky, S.: On the stability of solitary waves of a generalized Ostrovsky equation. Technical Report. (2006)Google Scholar
  39. 39.
    Levandosky, S., Liu, Y.: Stability of solitary waves of a generalized Ostrovsky equation. SIAM J. Math. Anal. 38, 985–1011 (2006)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Levandosky, S., Liu, Y.: Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Disc. Cont. Dyn. Syst. Ser. B 7, 793–806 (2007)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Linares, F., Milanés, A.: Local and global well-posedness for the Ostrovsky equation. J. Diff. Eq. 222, 325–340 (2006)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Liu, Y., Varlamov, V.: Stability of solitary waves and weak rotation limit for the Ostrovsky equation. J. Diff. Eq. 203, 159–183 (2004)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Lombardi, E.: Topics in Bifurcation Theory and ApplicationsOscillatory Integral and Phenomena Beyond all Algebraic Orders. Springer, Berlin (2000)Google Scholar
  44. 44.
    Obregon, M.A., Stepanyants, Y.A.: On numerical solution of the Gardner-Ostrovsky equation. Math. Model Nat. Phenom. 7(2), 113–130 (2012)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Ostrovsky, L.A.: Nonlinear internal waves in a rotating ocean. Okeanologia 18, 181–191 (1978)Google Scholar
  46. 46.
    Ostrovsky, L.A., Stepanyants, Y.A.: Nonlinear surface and internal waves in rotating fluids. In: Nonlinear Waves 3, pp. 106–128. Springer, New York (1990)CrossRefGoogle Scholar
  47. 47.
    Pelinovsky, D.E., Stepanyants, Y.A.: Convergence of Petviashvili’s iteration method for numerical approximation of stationary solutions of nonlinear wave equations. SIAM J. Numer. Anal. 42, 1110–1127 (2004)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Pelloni, B., Dougalis, V.A.: Numerical solution of some nonlocal nonlinear dispersive wave equations. J. Nonlinear Sci. 10, 1–22 (2000)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Pelloni, B., Dougalis, V.A.: Error estimates for a fully discrete spectral scheme for a class of nonlinear, nonlocal dispersive wave equations. Appl. Numer. Math. 37, 95–107 (2001)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Petviashvili, V.I.: Equation of an extraordinary soliton. Soviet J. Plasma Phys. 2, 257–258 (1976)ADSGoogle Scholar
  51. 51.
    Sanz-Serna, M., J., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)CrossRefGoogle Scholar
  52. 52.
    Shira, V.: Propagation of long nonlinear waves in a layer of a rotating fluid. Iza. Akad. Nauk SSSR, Fiz Atmosfery i Okeana 17, 76–81 (1981)Google Scholar
  53. 53.
    Shira, V.: On long essentially nonlinear waves in a rotating ocean. Iza. Akad. Nauk SSSR, Fiz Atmosfery i Okeana 22, 395–405 (1986)Google Scholar
  54. 54.
    Sidi, A.: Convergence and stability of minimal polynomial and reduced rank extrapolation algorothms. SIAM J. Numer. Anal. 23, 197–209 (1986)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Sidi, A., Ford, W.F., Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer. Anal. 23, 178–196 (1986)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Smith, D.A., Ford, W.F., Sidi, A.: Extrapolation methods for vector sequences. SIAM Rev. 29, 199–233 (1987)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Thomée, V., Vasudeva Murthy, A.S.: A numerical method for the Benjamin-Ono equation. BIT 38, 597–611 (1998)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)CrossRefGoogle Scholar
  59. 59.
    Tsuwaga, K.: Well-posedness and weak rotation limit for the Ostrovsky equation. J. Diff. Eq. 247, 3163–3180 (2009)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Varlamov, V., Liu, Y.: Cauchy problem for the Ostrovsky equation. Disc. Dyn. Syst. 10, 731–751 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied Mathematics DepartmentUniversity of ValladolidValladolidSpain

Personalised recommendations