Lignocellulosic Biomass for Energy, Biofuels, Biomaterials, and Chemicals

  • Abla Alzagameem
  • Basma El Khaldi-Hansen
  • Birgit KammEmail author
  • Margit Schulze


The main objective of this chapter is to explore the lignocellulose feedstock (LCF) biorefinery for industrial usage according to green chemistry principles. In particular, the isolation and valorization of lignin as one of the most interesting intermediates of LCF biorefineries is discussed, including lignin isolation, purification, and structure analysis. Structure elucidation involves various chromatographic, spectroscopic, microscopic, and thermochemical methods. Thus, basic structure–property relationships regarding the influence of biomass source and isolation process on lignin amount, constitution, and 3D structure are highlighted. Furthermore, storage effects on lignin structure and degradation effects are presented. Finally, potential applications are discussed, including novel lignin-based hydrogels, composite compounds (hybrids), and nanomaterials. Focus is drawn to antioxidant and antimicrobial activity of lignin for applications in packaging and biomedicine, that is, biomaterials for drug release and tissue engineering.


Antimicrobial activity Antioxidant activity Biomass Biomaterial Biorefinery Cellulose Lignin Lignocellulose feedstock Pulping Renewable resource 



Financial support (scholarship) was given to Abla Alzagameem by the Avempace-II Erasmus-Mundus Programme and the Graduate Institute of the Bonn-Rhein- Sieg University of Applied Sciences.


  1. Agarwal UP, McSweeny JD, Ralph SA (2011) FT-Raman investigation of milled-wood lignins: softwood, hardwood, and chemically modified black spruce lignins. J Wood Chem Technol 31:324–344CrossRefGoogle Scholar
  2. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685CrossRefGoogle Scholar
  3. Ahuja D, Kaushik A, Chauhan GS (2017) Fractionation and physicochemical characterization of lignin from waste jute bags: effect of process parameters on yield and thermal degradation. Int J Biol Macromol 97:403–410CrossRefGoogle Scholar
  4. Alekhina M, Ershova O, Ebert A, Heikkinen S, Sixta H (2015) Softwood kraft lignin for value-added applications: fractionation and structural characterization. Ind Crop Prod 66:220–228CrossRefGoogle Scholar
  5. Amzad HM, Shah M (2015) A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. Arab J Chem 8:66–71CrossRefGoogle Scholar
  6. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  7. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523CrossRefGoogle Scholar
  8. Baba SA, Malik SA (2015) Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J Taibah Univ Sci 9:449–454CrossRefGoogle Scholar
  9. Balan V, David Chiaramonti D, Kumar S (2013) Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels Bioprod Biorefin 7:732–759CrossRefGoogle Scholar
  10. Barapatre A, Meena AS, Mekala S, Das A, Jha H (2016) In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. Int J Biol Macromol 86:443–453CrossRefGoogle Scholar
  11. Beisl S, Miltner A, Friedl A (2017) Lignin from micro- to nanosize: production methods. Int J Mol Sci 18:1244–1271CrossRefGoogle Scholar
  12. Bhat R, Abdullah N, Din RH, Tay GS (2013) Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. J Food Eng 119:707–713CrossRefGoogle Scholar
  13. Chang G, Huang Y, Xie J, Yang H, Liu H, Yin X, Wu C (2016) The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Convers Manag 124:587–597CrossRefGoogle Scholar
  14. Chen J, Liu C, Wu SH, Liang J, Lei M (2016) Enhancing the quality of bio-oil from catalytic pyrolysis of kraft black liquor lignin. RSC Adv 6:107970–107976CrossRefGoogle Scholar
  15. Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M (2012) New cellulose-lignin hydrogels and their application in controlled release of polyphenols. Mat Sci Eng C Mater 32:452–463CrossRefGoogle Scholar
  16. Constant S,  Wienk HLJ,  Frissen AE,  de Peinder P, Boelens R,  van Es DS, Grisel RJH, Weckhuysen BM,  Huijgen WJJ,  Gosselink RJA,  Bruijnincx PCA (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem. 18 (9):2651–2665Google Scholar
  17. Dababi I, Gimello O, Elaloui E, Quignard F, Brosse N (2016) Organosolv lignin-basedwood adhesive influence of the lignin extraction conditions on the adhesive performance. Polymers (Basel) 8:340/1–340/15CrossRefGoogle Scholar
  18. Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50Google Scholar
  19. Dautzenber G, Gerhardt M, Kamm B (2011) Biobased fuels and fuel additives from lignocellulose feedstock. In: Biorefineries: industrial processes and products, status quo and future directions, vol 1. Wiley, Weinheim, pp 139–164Google Scholar
  20. Directive 2009/28/EC of 28 April. 2009 on the promotion of the use of energy from renewable sources [online] Available at: [July 03, 2017]
  21. Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins––natural antioxidants. Bioresour Technol 95:309–317CrossRefGoogle Scholar
  22. Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21:692–701CrossRefGoogle Scholar
  23. Dong X, Dong M, Lu Y, Turley A, Jin T, Wu C (2011) Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind Crop Prod 34:1629–1634CrossRefGoogle Scholar
  24. Downing M, Eaton LM, Graham RL, Langholtz MH, Perlack RD, Turhollow AF Jr, Stokes B, Brandt CC (2011) US billion-ton update: biomass supply for a bioenergy and bio- products industry. Oak Ridge National Laboratory, Oak RidgeCrossRefGoogle Scholar
  25. Dumitriu S, Popa VI (2013) Polymeric biomaterials, vol 1. CRC Press, Boca Raton, pp 551–578CrossRefGoogle Scholar
  26. Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the iobased economy: the role of chemocatalysis. Energy Environ Sci 6:1415–1442CrossRefGoogle Scholar
  27. Dyne DL, et al (1999) Estimating the economic feasibility of converting Lifno-cellulosic feedstocks to ethanol and higher value chemicals under the refinery concept: a phase II study. OR22072–58, University of MissouriGoogle Scholar
  28. EC (1995) European Parliament and Council Directive No 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners. Official Journal of the European Communities No. L61 18.3.1995.
  29. El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from Miscanthus. Polym Degrad Stab 94:1632–1638CrossRefGoogle Scholar
  30. El Khaldi-Hansen B, El-Sayed F, Schipper D, Tobiasch E, Witzleben S, Schulze M (2017) Functionalized 3D scaffolds for template-mediated biomineralization in bone regeneration. Front Stem Cell Regen Med Res 4:3–58Google Scholar
  31. El Mansouri NE, Salvado J (2007) Analytical methods for determining functional groups in various technical lignins. Ind Crop Prod 26:116–124CrossRefGoogle Scholar
  32. Elbersen B, Staritsky I, Hengeveld G, Schelhaas MJ, Naeff H, Böttcher H (2012) Atlas of EU biomass potential. Deliverable 3.3: spatially detailed and quantified overview of EU biomass potential taking into account the main criteria determining biomass availability from different sources. [online] Available at: [July 03, 2017]
  33. Espinoza-Acosta JL, Torres-Chavez PI, Ramirez-Wong B, Lopez-Saiz CM, Montano-Leyva B (2016) Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. Bioresources 11:1–30CrossRefGoogle Scholar
  34. Faix O, Genuit W, Boon JJ (1987) Characterization of beech milled wood lignin by pyrolysis-gas chromatography photoionization mass spectrometry. Anal Chem 59:508–513CrossRefGoogle Scholar
  35. Fromm J, Rockel B, Lautner S, Windeisen E, Wanner G (2003) Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J Struct Biol 143:77–84CrossRefGoogle Scholar
  36. Galbe M, Zacci G (2002) A review of production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628CrossRefGoogle Scholar
  37. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65Google Scholar
  38. Garcia A, Toledano A, Serrano L, Egues I, Gonzalez M, Marin F, Labidi J (2009) Characterization of lignins obtained by selective precipitation. Sep Purif Technol 68:193–198CrossRefGoogle Scholar
  39. Garcia A, Gonzalez M, Labidi AJ (2014) Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Ind Crops Prod 53:102–110CrossRefGoogle Scholar
  40. Giannini C, Ladisa M, Altamura D, Siliqi D, Sibillano T, De Caro L (2016) X-ray diffraction: a powerful technique for the multiple-length-scale structural analysis of nanomaterials. Crystals 6:87/1–87/22CrossRefGoogle Scholar
  41. González Arzola K, Polvillo O, Arias ME, Perestelo F, Carnicero A, González-Vila FJ, Falcón MA (2006) Early attack and subsequent changes produced in an industrial lignin by a fungal laccase and a laccase-mediator system: an analytical approach. Appl Microbiol Biotechnol 73:141–150CrossRefGoogle Scholar
  42. Gordobila O, Delucisb R, Egüésa I, Labidia J (2015) Kraft lignin as filler in PLA to improve ductility and thermal properties. Ind Crop Prod 72:46–53CrossRefGoogle Scholar
  43. Granata A, Argyropoulos DS (1995) 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospho-lane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J Agric Food Chem 43:1538–1544CrossRefGoogle Scholar
  44. Grisel RJH, van der Waal JC, de Jong E, Huijgen WJJ (2014) Acid catalysed alcoholysis of wheat straw: towards second generation furan-derivatives. Catal Today 223:3–10CrossRefGoogle Scholar
  45. Hamaguchi M, Kautto J, Vakkilainen E (2013) Effects of hemicellulose extraction on the kraft pulp mill operation and energy use: review and case study with lignin removal. Chem Eng Res Des 91:1284–1291CrossRefGoogle Scholar
  46. Hansen B (2015) Dissertation, Brandenburgisch-Technische Universität (BTU), Cottbus-SenftenbergGoogle Scholar
  47. Hansen B, Kusch P, Schulze M, Kamm B (2016) Qualitative and quantitative analysis of lignin produced from beech wood by different conditions of the Organosolv process. J Polym Environ 24:85–97CrossRefGoogle Scholar
  48. Harmsen P, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass, vol. 9.Tech. Rep. 1184, Biosynergy, Wageningen UR Food & Biobased Research, pp 170–174Google Scholar
  49. Holladay JE, Bozell JJ, White JF, Johnson D (2007) Top value-added chemicals from biomass. Pacific Northwest National Laboratory, RichlandGoogle Scholar
  50. Hossen M, Rahman S, Kabir AS, Hasan MMF, Ahmed S (2017) Systematic assessment of the availability and utilization potential of biomass in Bangladesh. Renew Sust Energ Rev 67:94–105CrossRefGoogle Scholar
  51. Imran M, El-Fahmy S, Revol-Junelles AM, Desobry S (2010) Cellulose derivative based active coatings: effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydr Polym 81:219–225CrossRefGoogle Scholar
  52. International Energy Agency (2014) Renewables information (2016 edition). IEA bioenergy task 42 report
  53. Jiang X, Savithri D, Du X, Pawar S, Jameel H, Chang H, Zhou X (2017) Fractionation and characterization of Kraft lignin by sequential precipitation with various organic solvents. ACS Sustain Chem Eng 5:835–842CrossRefGoogle Scholar
  54. Joseph J, Rasmussen MJ, Fecteau JP, Kim S, Lee H, Tracy KA, Jensen BL, Frederick BG, Stemmler EA (2016) Compositional changes to low water content bio-oils during aging: an NMR, GC/MS, and LC/MS study. Energy Fuel 30:4825–4840CrossRefGoogle Scholar
  55. Kamm B, Kamm M, Schmidt M, Starke I, Kleinpeter E (2006) Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus nootkatensis): quantification of glucose. Chemosphere 62:97–105CrossRefGoogle Scholar
  56. Kamm B, Gruber PR, Kamm M (2015) Biorefineries: industrial processes and products. Wiley, WeinheimGoogle Scholar
  57. Larsen KL, Barsberg S (2011) Environmental effects on the lignin model monomer, Vanillyl alcohol, studied by Raman spectroscopy. J Phys Chem B 115:11470–11480CrossRefGoogle Scholar
  58. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290CrossRefGoogle Scholar
  59. Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SP, Sousa LD, Melnichenko YB, Dale BE, Simmons BA, Singh S (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 102:6928–696936Google Scholar
  60. Long J, Xu Y, Wang T, Yuan Z, Shu R, Zhang Q, Ma L (2015) Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination. Appl Energy 141:70–79CrossRefGoogle Scholar
  61. Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ (2015) Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sust Energ Rev 49:871–906CrossRefGoogle Scholar
  62. Michailof CM, Kalogiannis KG, Sfetsas T, Patiaka DT, Lappas AA (2016) Advanced analytical techniques for bio-oil characterization. WIREs Energy Environ 5:614–639CrossRefGoogle Scholar
  63. Nak SN, Goud VV, Rout PK, Dalai AK (2009) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597CrossRefGoogle Scholar
  64. Nakagawa-Izumi A, H’ng YY, Mulyantara LT, Maryana R, Do Vu T, Ohi H (2017) Characterization of syringyl and guaiacyl lignins in thermomechanical pulp from oil palm empty fruit bunch by pyrolysis-gas chromatography-mass spectrometry using ion intensity calibration. Ind Crop Prod 95:615–620CrossRefGoogle Scholar
  65. Ozturk M, Saba N, Altay V, Iqbal R, Hakeem KR, Jawaid M, Ibrahim FH (2017) Biomass and bioenergy: an overview of the development potential in Turkey and Malaysia. Renew Sust Energ Rev 79:1285–1302CrossRefGoogle Scholar
  66. Panoutsou C, Uslu A, van Stralen J, Elbersen B, Bottcher H, Fritsche U, Kretschmer B (2012) How much can biomass contribute to meet the demand for 2020 & which market segments are more promising? Proceedings of the 20th EU biomass conference and exhibition, Milan, ItalyGoogle Scholar
  67. Park S, Kim SH, Kim JH, Yu H, Kim HJ, Yang YH, Kim H, Kim YH, Ha SH, Lee SH (2015) Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase. J Mol Catal B-Enzym 119:33–39CrossRefGoogle Scholar
  68. Puls J (2009) Stoffliche Nutzung von Lignin. Gülzower Fachgespräche Band 31, Fachagentur Nachwachsende Rohstoffe e.V. (FNR), pp 18–41Google Scholar
  69. Rabaçal M, Ferreira AF, Silva CAM, Costa M (eds) (2017) Biorefineries: targeting energy,high value products and waste valorisation. Springer International Publishing, ChamGoogle Scholar
  70. Raschip IE, Hitruc GE, Vasile C, Popescu MC (2013) Effect of the lignin type on the morphology and thermal properties of the xanthan/lignin hydrogels. Int J Biol Macromol 54:230–237CrossRefGoogle Scholar
  71. Richter AP, Brown JS, Bharti B, Wang A, Gangwal S, Houck K, Cohen H, Elaine A, Paunov VN, Stoyanov SD, Velev OD (2015) An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat Nanotechnol 10:817–823CrossRefGoogle Scholar
  72. Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. International Edition 55:8164–8215CrossRefGoogle Scholar
  73. Ringpfeil M (2001) Biobased industrial products and biorefinery systems. Industrielle Zukunft des 21. Jahrhunderts? Brandenburgische Umwelt Berichte, BUB 10, ISSN 1434-2375Google Scholar
  74. RL W, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100(9):2569–2574Google Scholar
  75. Sa’don NA, Abdul Rahim A, Hussin MH (2017) The effect of p-nitrophenol toward the structural characteristics and antioxidant activity of oil palm fronds (OPF) lignin polymers. Int J Biol Macromol 98:701–708CrossRefGoogle Scholar
  76. Sam ST, Nuradibah MA, Ismail H, Noriman NZ, Ragunathan S (2014) Recent advances in polyolefins/natural polymer blends used for packaging application. Polym Plast Technol 53:631–644CrossRefGoogle Scholar
  77. Sana B, Raghavan SS, Ghadessy FJ, Chia KHB, Nagarajan N, Ramalingam B, Seayad J (2017) Development of a genetically programed vanillin-sensing bacterium for high-throughput screening of lignin-degrading enzyme libraries. Biotechnol Biofuels 10:32CrossRefGoogle Scholar
  78. Sánchez-González L, Chiralt A, González-Martínez C, Cháfer M (2011) Effect of essential oils on properties of film forming emulsions and films based on hydroxypropyl methylcellulose and chitosan. J Food Eng 105:246–253CrossRefGoogle Scholar
  79. Santos P, Erdocia X, Gatto DA, Labidi J (2014) Characterisation of Kraft lignin separated by gradient acidprecipitation. Ind Crop Prod 55:149–154CrossRefGoogle Scholar
  80. Sebti I, Chollet E, Degraeve P, Noel C, Peyrol E, Agri J (2007) Water sensitivity, antimicrobial, and physicochemical analyses of edible films based on HPMC and/or chitosan. J Agric Food Chem 55:693–699CrossRefGoogle Scholar
  81. Silva-Weiss A, Ihl M, Sobral PJ, Gómez-Guillén MC, Bifani V (2013) Natural additives in bioactive edible films and coatings: functionality and applications in foods. Food Eng Rev 5:200–216CrossRefGoogle Scholar
  82. Singh BR, Singh O (2012) Global trends of fossil fuel reserves and climate change in the 21st century (Khan S, ed). Fossil Fuel Environ 2012:168Google Scholar
  83. Siracusa V, Blanco I, Romani S, Tylewicz U, Rocculi P, Rosa MD (2012) Poly(lactic acid)-modified films for food packaging application: physical, mechanical, and barrier behavior. J Appl Polym Sci 125:E390–E401CrossRefGoogle Scholar
  84. Son S, Lewis BA (2002) Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure–activity relationship. J Agric Food Chem 50:468–472CrossRefGoogle Scholar
  85. Sulaeva I, Zinovyev G, Plankeele JM, Sumerskii I, Rosenau T, Potthast A (2017) Fast track to molar-mass distributions of technical lignins. ChemSusChem 10:629–635CrossRefGoogle Scholar
  86. Sun SN, Cao XF, Xu F, Sun RC, Jones GL (2014) Structural features and antioxidant activities of lignins from steam-exploded bamboo (Phyllostachys pubescens). J Agric Food Chem 62:5939–5947CrossRefGoogle Scholar
  87. Tajeddin B (2015) Cellulose-based polymers for packaging applications. In: Lignocellulosic polymer composites. Scrivener, New York, pp 477–498Google Scholar
  88. Tanjung FA, Husseinsyah S, Hussin K, Hassan A (2016) Mechanical and thermal properties of organosolv lignin/sodium dodecyl sulphate binary agent-treated polypropylene/chitosan composites. Polym Bull (Berl) 73:1427–1445CrossRefGoogle Scholar
  89. Tolbert A, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ (2014) Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels Bioprod Biorefin 8:836–856CrossRefGoogle Scholar
  90. Vallejos ME, Felissia FE, Curvelo AAS, Zambon MD, Ramos L, Area MC (2011) Chemical and physico-chemical characterization of lignins obtained from ethanol-water fractionation of bagasse. Bioresources 6:1158–1171Google Scholar
  91. Van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597CrossRefGoogle Scholar
  92. Vaz S Jr (2014) Analytical techniques for the chemical analysis of plant biomass and biomass products. Anal Methods-UK 6:8094–8105CrossRefGoogle Scholar
  93. Vaz S Jr (2015) An analytical chemist’s view of lignocellulosic biomass. Bioresources 10:3815–3817Google Scholar
  94. Vázquez G, Antorrena G, González J, Freire S (1997) The influence of pulping conditions on the structure of acetosolv eucalyptus lignins. J Wood Chem Technol 17:147–162CrossRefGoogle Scholar
  95. Vinardell MP, Mitjans M (2017) Lignins and their derivatives with beneficial effects on human health. Int J Mol Sci 18:1219–1234CrossRefGoogle Scholar
  96. Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6:3547–3568Google Scholar
  97. Vivekanand V, Chawade A, Larsson M, Larsson A, Olsson O (2014) Identification and qualitative characterization of high and low ligninlines from an oat tilling population. Ind Crop Prod 59:1–8CrossRefGoogle Scholar
  98. Wang C, Kelley SS, Venditti RA (2016a) Lignin-based thermoplastic materials. ChemSusChem 9:770–783CrossRefGoogle Scholar
  99. Wang K, Loo LS, Goh KL (2016b) A facile method for processing lignin reinforced chitosan biopolymer microfibres: optimising the fibre mechanical properties through lignin type and concentration. Mater Res Express 3:035301/1–035301/13Google Scholar
  100. Wi SG, Cho EJ, Lee DS, Lee SJ, Lee YJ, Bae HJ (2015) Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream bocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuels 8:228CrossRefGoogle Scholar
  101. Widsten P, Heathcote C, Kandelbauer A, Guebitz G, Nyanhongo GS, Prasetyo EN, Kudanga T (2010) Enzymatic surface functionalisation of lignocellulosic materials with tannins for enhancing antibacterial properties. Process Biochem 45:1072–1081CrossRefGoogle Scholar
  102. Wu S, Lv G, Lou R (2012) Applications of chromatography hyphenated techniques in the field of lignin pyrolysis. Appl Gas Chromatogr 2012:41–64Google Scholar
  103. Xu F, Shi YC, Wang D (2013) Towards understanding structural changes of photoperiod-sensitive sorghum biomass during sulfuric acid pretreatment. Bioresour Technol 135:704–709CrossRefGoogle Scholar
  104. Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM, Kenny JM, Puglia D (2016) Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. Int J Biol Macromol 89:360–368CrossRefGoogle Scholar
  105. Zhang Y, Vadlani PV (2015) Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J Biosci Bioeng 119:694–699CrossRefGoogle Scholar
  106. Zhang J, Chen Y, Sewell P, Brook MA (2015) Utilization of softwood lignin as both crosslinker and reinforcing agent in silicone elastomers. Green Chem 17:3176CrossRefGoogle Scholar
  107. Zhao W, Xiao LP, Song G, Sun RC, He L, Singh S, Simmons BA, Cheng G (2017) From lignin subunits to aggregates: insights into lignin solubilization. Green Chem 19(14):3272–3281Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Abla Alzagameem
    • 1
    • 2
  • Basma El Khaldi-Hansen
    • 2
  • Birgit Kamm
    • 1
    • 3
    Email author
  • Margit Schulze
    • 2
  1. 1.Faculty of Environment and Natural SciencesBrandenburg University of Technology BTU Cottbus-SenftenbergCottbusGermany
  2. 2.Department of Natural SciencesBonn-Rhein-Sieg University of Applied SciencesRheinbachGermany
  3. 3.Kompetenzzentrum Holz GmbHLinzAustria

Personalised recommendations