Mining Domain-Specific Accounts for Scientific Contents from Social Media

  • Jun WangEmail author
  • Junfu Xiang
  • Yun Zhang
  • Kanji Uchino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10473)


This paper proposes a machine learning based approach to automatically create an initial set of domain-specific accounts by matching real-world authors of the latest domain-specific publications to corresponding social media accounts. An efficient approach based on social network analysis is further applied to extend the initial set by finding more domain-specific accounts of various types and filtering out irrelevant general or non-domain-specific accounts. Our experiments on Twitter are used to verify feasibility and effectiveness of the proposed methods.


Domain-specific scientific contents Social network analysis Social media 


  1. 1.
    Coleman, V.: Social media as a primary source: a coming of age. EDUCAUSE Rev. 48(6), 60–61 (2013)Google Scholar
  2. 2.
    Hadgu, A.T., Jäschke, R.: Identifying and analyzing researchers on twitter. In: Proceedings of the 2014 ACM Conference on Web Science, WebSci 2014, pp. 23–32. ACM, New York (2014).
  3. 3.
    Ke, Q., Ahn, Y.Y., Sugimoto, C.R.: A systematic identification and analysis of scientists on twitter. PLoS ONE 12(4), e0175368 (2017)CrossRefGoogle Scholar
  4. 4.
    Wang, J., Xiang, J., Uchino, K.: Topic-specific recommendation for open education resources. In: Li, F.W.B., Klamma, R., Laanpere, M., Zhang, J., Manjón, B.F., Lau, R.W.H. (eds.) ICWL 2015. LNCS, vol. 9412, pp. 71–81. Springer, Cham (2015). doi: 10.1007/978-3-319-25515-6_7 CrossRefGoogle Scholar
  5. 5.
    Wang, J., Xiang, J., Uchino, K.: Domain-specific recommendation by matching real authors to social media users. In: Chiu, D.K.W., Marenzi, I., Nanni, U., Spaniol, M., Temperini, M. (eds.) ICWL 2016. LNCS, vol. 10013, pp. 246–252. Springer, Cham (2016). doi: 10.1007/978-3-319-47440-3_27 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jun Wang
    • 1
    Email author
  • Junfu Xiang
    • 2
  • Yun Zhang
    • 2
  • Kanji Uchino
    • 1
  1. 1.Fujitsu Laboratories of AmericaSunnyvaleUSA
  2. 2.Nanjing Fujitsu Nanda Software Tech. Co., Ltd.NajingChina

Personalised recommendations