Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection
Conference paper
First Online:
Abstract
We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.
References
- 1.Almansa, A., Desolneux, A., Vamech, S.: Vanishing point detection without any a priori information. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 502–507 (2003)CrossRefGoogle Scholar
- 2.Antunes, M., Barreto, J.P.: A global approach for the detection of vanishing points and mutually orthogonal vanishing directions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1336–1343 (2013)Google Scholar
- 3.Barinova, O., Lempitsky, V., Tretiak, E., Kohli, P.: Geometric image parsing in man-made environments. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 57–70. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15552-9_5 CrossRefGoogle Scholar
- 4.Barnard, S.T.: Interpreting perspective images. Artif. Intell. 21(4), 435–462 (1983)CrossRefGoogle Scholar
- 5.Beardsley, P., Murray, D.: Camera calibration using vanishing points. In: Hogg, D., Boyle, R. (eds.) BMVC92, pp. 416–425. Springer, London (1992)CrossRefGoogle Scholar
- 6.Borji, A.: Vanishing point detection with convolutional neural networks. arXiv preprint arXiv:1609.00967 (2016)
- 7.Coughlan, J.M., Yuille, A.L.: Manhattan world: compass direction from a single image by Bayesian inference. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 941–947. IEEE (1999)Google Scholar
- 8.Criminisi, A., Reid, I., Zisserman, A.: Single view metrology. Int. J. Comput. Vis. 40(2), 123–148 (2000)CrossRefMATHGoogle Scholar
- 9.Denis, P., Elder, J.H., Estrada, F.J.: Efficient edge-based methods for estimating manhattan frames in urban imagery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 197–210. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88688-4_15 CrossRefGoogle Scholar
- 10.Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Rob. Res. (IJRR) 32, 1231–1237 (2013)CrossRefGoogle Scholar
- 11.von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2010)CrossRefGoogle Scholar
- 12.Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
- 13.Hedau, V., Hoiem, D., Forsyth, D.: Recovering the spatial layout of cluttered rooms. In: 2009 IEEE 12th international conference on Computer Vision, pp. 1849–1856. IEEE (2009)Google Scholar
- 14.Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
- 15.Košecká, J., Zhang, W.: Video compass. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 476–490. Springer, Heidelberg (2002). doi: 10.1007/3-540-47979-1_32 CrossRefGoogle Scholar
- 16.Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
- 17.LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
- 18.Lezama, J., von Gioi, R.G., Randall, G., Morel, J.M.: Finding vanishing points via point alignments in image primal and dual domains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 509–515 (2014)Google Scholar
- 19.Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATHGoogle Scholar
- 20.Rother, C.: A new approach to vanishing point detection in architectural environments. Image Vis. Comput. 20(9), 647–655 (2002)CrossRefGoogle Scholar
- 21.Schindler, G., Dellaert, F.: Atlanta world: an expectation maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, p. I. IEEE (2004)Google Scholar
- 22.Tardif, J.P.: Non-iterative approach for fast and accurate vanishing point detection. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1250–1257. IEEE (2009)Google Scholar
- 23.Ueda, Y., Kamakura, Y., Saiki, J.: Eye movements converge on vanishing points during visual search. Jpn. Psychol. Res. 59, 109–121 (2017)CrossRefGoogle Scholar
- 24.Vedaldi, A., Zisserman, A.: Self-similar sketch. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 87–100. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33709-3_7 CrossRefGoogle Scholar
- 25.Wildenauer, H., Hanbury, A.: Robust camera self-calibration from monocular images of Manhattan worlds. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2831–2838. IEEE (2012)Google Scholar
- 26.Workman, S., Zhai, M., Jacobs, N.: Horizon lines in the wild. arXiv preprint arXiv:1604.02129 (2016)
- 27.Xu, Y., Oh, S., Hoogs, A.: A minimum error vanishing point detection approach for uncalibrated monocular images of man-made environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1376–1383 (2013)Google Scholar
- 28.Zhai, M., Workman, S., Jacobs, N.: Detecting vanishing points using global image context in a non-manhattan world. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5657–5665 (2016)Google Scholar
Copyright information
© Springer International Publishing AG 2017