Advertisement

Relative Store Fragments for Singleton Abstraction

  • Leandro Facchinetti
  • Zachary PalmerEmail author
  • Scott F. Smith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10422)

Abstract

A singleton abstraction occurs in a program analysis when some results of the analysis are known to be exact: an abstract binding corresponds to a single concrete binding. In this paper, we develop a novel approach to constructing singleton abstractions via relative store fragments. Each store fragment is a locally exact store abstraction in that it contains only those abstract variable bindings necessary to address a particular question at a particular program point; it is relative to that program point and the point of view may be shifted. We show how an analysis incorporating relative store fragments achieves flow-, context-, path- and must-alias sensitivity, and can be used as a basis for environment analysis, without any machinery put in place for those specific aims. We build upon recent advances in demand-driven higher-order program analysis to achieve this construction as it is fundamentally tied to demand-driven lookup of variable values.

Keywords

Store Fragments Program Point 1DR SF Path Sensitization Must-alias Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the anonymous reviewers for helpful suggestions which improved the final version of the paper.

References

  1. [Age95]
    Agesen, O.: The cartesian product algorithm. In: Tokoro, M., Pareschi, R. (eds.) ECOOP 1995. LNCS, vol. 952, pp. 2–26. Springer, Heidelberg (1995). doi: 10.1007/3-540-49538-X_2 Google Scholar
  2. [BA98]
    Bodík, R., Anik, S.: Path-sensitive value-flow analysis. In: POPL (1998)Google Scholar
  3. [BEM97]
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). doi: 10.1007/3-540-63141-0_10 CrossRefGoogle Scholar
  4. [Bes09]
    Besson, F.: CPA beats \(\infty \)-CFA. In: Proceedings of the 11th International Workshop on Formal Techniques for Java-like Programs (2009)Google Scholar
  5. [BFL+14]
    Bergstrom, L., Fluet, M., Le, M., Reppy, J., Sandler, N.: Practical and effective higher-order optimizations. In: ICFP (2014)Google Scholar
  6. [Bou92]
    Bourdoncle, F.: Abstract interpretation by dynamic partitioning. J. Funct. Program 2, 407–423 (1992)MathSciNetCrossRefGoogle Scholar
  7. [CC77]
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL (1977)Google Scholar
  8. [CWZ90]
    Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In: PLDI (1990)Google Scholar
  9. [DGS97]
    Duesterwald, E., Gupta, R., Soffa, M.L.: A practical framework for demand-driven interprocedural data flow analysis. ACM Trans. Program. Lang. Syst. 19(6), 992–1030 (1997)CrossRefGoogle Scholar
  10. [DLS02]
    Das, M., Lerner, S., Mark Seigle, E.S.P.: Path-sensitive program verification in polynomial time. In: PLDI (2002)Google Scholar
  11. [DMH15]
    Darais, D., Might, M., Van Horn, D.: Galois transformers and modular abstract interpreters. In: OOPSLA (2015)Google Scholar
  12. [EMH10]
    Earl, C., Might, M., Van Horn, D.: Pushdown control-flow analysis of higher-order programs. In: Workshop on Scheme and Functional Programming (2010)Google Scholar
  13. [FRD00]
    Fähndrich, M., Rehof, J., Das, M.: Scalable context-sensitive flow analysis using instantiation constraints. In: PLDI (2000)Google Scholar
  14. [FSDF93]
    Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with continuations. In: PLDI (1993)Google Scholar
  15. [GLA+16]
    Gilray, T., Lyde, S., Adams, M.D., Might, M., Van Horn, D.: Pushdown control-flow analysis for free. In: POPL (2016)Google Scholar
  16. [GM17]
    Germane, K., Might, M.: A posteriori environment analysis with pushdown Delta CFA. In: POPL (2017)Google Scholar
  17. [HT98]
    Handjieva, M., Tzolovski, S.: Refining static analyses by trace-based partitioning using control flow. In: Static Analysis Symposium (1998)Google Scholar
  18. [HT01]
    Heintze, N., Tardieu, O.: Demand-driven pointer analysis. In: PLDI (2001)Google Scholar
  19. [JLMVH13]
    Johnson, J.I., Labich, N., Might, M., Van Horn, D.: Optimizing abstract abstract machines. In: ICFP (2013)Google Scholar
  20. [JSE+14]
    Johnson, J.I., Sergey, I., Earl, C., Might, M., Van Horn, D.: Pushdown flow analysis with abstract garbage collection. In: JFP (2014)Google Scholar
  21. [JTWW98]
    Jagannathan, S., Thiemann, P., Weeks, S., Wright, A.K.: Single and loving it: must-alias analysis for higher-order languages. In: POPL (1998)Google Scholar
  22. [Mid12]
    Midtgaard, J.: Control-flow analysis of functional programs. ACM Comput. Surv. 44, 10:1–10:33 (2012)Google Scholar
  23. [Mig07]
    Might, M.: Environment analysis of higher-order languages. PhD thesis, Georgia Institute of Technology (2007)Google Scholar
  24. [Mig10a]
    Might, M.: Abstract interpreters for free. In: Proceedings of the 17th International Conference on Static Analysis (2010)Google Scholar
  25. [Mig10b]
    Might, M.: Shape analysis in the absence of pointers and structure. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 263–278. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11319-2_20 CrossRefGoogle Scholar
  26. [MS06a]
    Might, M., Shivers, O.: Environment analysis via \(\Delta \)CFA. In: POPL (2006)Google Scholar
  27. [MS06b]
    Might, M., Shivers, O.: Improving flow analyses via \(\Gamma \)CFA: abstract garbage collection and counting. In: ICFP, Portland, Oregon (2006)Google Scholar
  28. [NNH99]
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  29. [PF16]
    Palmer, Z., Facchinetti, L.: DDPA implementation. https://github.com/JHU-PL-Lab/odefa/tree/sas2017-ddpa (2016)
  30. [PS16]
    Palmer, Z., Smith, S.: Higher-order demand-driven program analysis. In: ECOOP (2016)Google Scholar
  31. [Rep94]
    Reps, T.: Demand interprocedural program analysis using logic databases. In: Application of Logic Databases (1994)Google Scholar
  32. [Rey02]
    Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS (2002)Google Scholar
  33. [RF01]
    Rehof, J., Fähndrich, M.: Type-base flow analysis: from polymorphic subtyping to CFL-reachability. In: POPL. Springer, New York (2001)Google Scholar
  34. [SDAB16]
    Späth, J., Do, L.N.Q., Ali, K., Bodden, E.: Demand-driven flow- and context-sensitive pointer analysis for Java. In: ECOOP, Boomerang (2016)Google Scholar
  35. [SDM+13]
    Sergey, I., Devriese, D., Might, M., Midtgaard, J., Darais, D., Clarke, D., Piessens, F.: Monadic abstract interpreters. In: PLDI (2013)Google Scholar
  36. [Shi91]
    Shivers, O.: Control-flow analysis of higher-order languages. PhD thesis, Carnegie-Mellon University (1991). TR CMU-CS-91-145Google Scholar
  37. [SR05]
    Saha, D., Ramakrishnan, C.R.: Incremental and demand-driven points-to analysis using logic programming. In: PPDP (2005)Google Scholar
  38. [SW97]
    Steckler, P.A., Wand, M.: Lightweight closure conversion. ACM Trans. Program. Lang. Syst. 19, 48–86 (1997)CrossRefGoogle Scholar
  39. [THF10]
    Tobin-Hochstadt, S., Felleisen, M.: Logical types for untyped languages. In: ICFP (2010)Google Scholar
  40. [VHM10]
    Van Horn, D. Might, M.: Abstracting abstract machines. In: ICFP (2010)Google Scholar
  41. [VS10]
    Vardoulakis, D., Shivers, O.: CFA2: a context-free approach to control-flow analysis. In: European Symposium on Programming (2010)Google Scholar
  42. [XCE03]
    Xie, Y., Chou, A., Engler, D.: Using symbolic, path-sensitive analysis to detect memory access errors. In: ESEC/FSE, Archer (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Leandro Facchinetti
    • 1
  • Zachary Palmer
    • 2
    Email author
  • Scott F. Smith
    • 1
  1. 1.Department of Computer ScienceThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Computer ScienceSwarthmore CollegeSwarthmoreUSA

Personalised recommendations