Advertisement

Toward a Sound Analysis of Guarded LTI Loops with Inputs by Abstract Acceleration

  • Colas Le Guernic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10422)

Abstract

In a POPL 2014 paper, Jeannet et al. showed that abstract acceleration is a relevant approach for general linear loops thanks to the Jordan decomposition of the linear transformer. Bounding the number of loop iterations involves interval-linear constraints. After identifying sources of over-approximation, we present some improvements over their method. First, we improve precision by using interval hulls in the Jordan parameters space instead of the state space, avoiding further interval arithmetic. Then, we show how to use conic hulls instead of interval hulls to further improve precision.

Furthermore, we extend their work to handle linear loops with bounded nondeterministic input. This was already attempted by Cattaruzza et al. in a SAS 2015 paper, unfortunately their method is unsound. After explaining why, we propose a sound approach to guarded LTI loops with bounded nondeterministic inputs by reduction to the autonomous case.

References

  1. 1.
    Althoff, M.: An introduction to CORA 2015. In: Frehse, G., Althoff, M. (eds.) 1st and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems, ARCH14-15. EPiC Series in Computing, vol. 34, pp. 120–151. EasyChair (2015)Google Scholar
  2. 2.
    Althoff, M., Krogh, B.H., Stursberg, O.: Analyzing reachability of linear dynamic systems with parametric uncertainties. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with Uncertainties. Mathematical Engineering, vol. 3, pp. 69–94. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-15956-5_4 CrossRefGoogle Scholar
  3. 3.
    Althoff, M., Le Guernic, C., Krogh, B.H.: Reachable set computation for uncertain time-varying linear systems. In: Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, HSCC 2011, NY, USA, pp. 93–102 (2011). http://doi.acm.org/10.1145/1967701.1967717
  4. 4.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999). doi: 10.1007/3-540-49059-0_14 CrossRefGoogle Scholar
  5. 5.
    Cattaruzza, D., Abate, A., Schrammel, P., Kroening, D.: Unbounded-time analysis of guarded LTI systems with inputs by abstract acceleration. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 312–331. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48288-9_18 CrossRefGoogle Scholar
  6. 6.
    Cattaruzza, D., Abate, A., Schrammel, P., Kroening, D.: Unbounded-time analysis of guarded LTI systems with inputs by abstract acceleration (extended version). CoRR abs/1506.05607 (2015). http://arxiv.org/abs/1506.05607
  7. 7.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA, pp. 238–252. ACM (1977). http://doi.acm.org/10.1145/512950.512973
  8. 8.
    Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 33–48. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24725-8_4 CrossRefGoogle Scholar
  9. 9.
    Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear relation analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer, Heidelberg (2006). doi: 10.1007/11823230_10 CrossRefGoogle Scholar
  10. 10.
    Gonnord, L., Schrammel, P.: Abstract acceleration in linear relation analysis. Sci. Comput. Program. 93, 125–153 (2014). http://dx.doi.org/10.1016/j.scico.2013.09.016 CrossRefGoogle Scholar
  11. 11.
    Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general linear loops. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014, NY, USA, pp. 529–540 (2014). http://dx.doi.org/10.1145/2535838.2535843
  12. 12.
    Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal techniques for reachability analysis of discrete-time linear systems. IEEE Trans. Automat. Contr. 52(1), 26–38 (2007). http://dx.doi.org/10.1109/TAC.2006.887900 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Le Guernic, C.: Toward a sound analysis of guarded LTI loops with inputs by abstract acceleration (extended version). https://hal.inria.fr/hal-01550767
  14. 14.
    Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous dynamics. Ph.D. thesis, Université Joseph Fourier - Grenoble I (2009). https://tel.archives-ouvertes.fr/tel-00422569
  15. 15.
    Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02658-4_40 CrossRefGoogle Scholar
  16. 16.
    Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010). IFACWorldCongress2008. http://dx.doi.org/10.1016/j.nahs.2009.03.002
  17. 17.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24743-2_32 CrossRefGoogle Scholar
  18. 18.
    Roux, P., Jobredeaux, R., Garoche, P., Feron, E.: A generic ellipsoid abstract domain for linear time invariant systems. In: Hybrid Systems: Computation and Control (part of CPS Week 2012), HSCC 2012, Beijing, China, 17–19 April 2012, pp. 105–114. ACM (2012). http://doi.acm.org/10.1145/2185632.2185651

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DGA Maîtrise de l’InformationBruzFrance
  2. 2.Inria Rennes - Bretagne AtlantiqueRennesFrance

Personalised recommendations