Advertisement

On Proportional Allocation in Hedonic Games

  • Martin Hoefer
  • Wanchote JiamjitrakEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10504)

Abstract

Proportional allocation is an intuitive and widely applied mechanism to allocate divisible resources. We study proportional allocation for profit sharing in coalition formation games. Here each agent has an impact or reputation value, and each coalition represents a joint project that generates a total profit. This profit is divided among the agents involved in the project based on their reputation. We study existence, computational complexity, and social welfare of core-stable states with proportional sharing.

Core-stable states always exist and can be computed in time \(O(m \log m)\), where m is the total number of projects. Moreover, when profits have a natural monotonicity property, there exists a reputation scheme such that the price of anarchy is 1, i.e., every core-stable state is a social optimum. However, these schemes exhibit a strong inequality in reputation of agents and thus imply a lacking fairness condition. Our main results show a tradeoff between reputation imbalance and the price of anarchy. Moreover, we show lower bounds and computational hardness results on the reputation imbalance when prices of anarchy and stability are small.

References

  1. 1.
    Anshelevich, E., Bhardwaj, O., Hoefer, M.: Friendship and stable matching. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 49–60. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40450-4_5CrossRefGoogle Scholar
  2. 2.
    Anshelevich, E., Hoefer, M.: Contribution games in networks. Algorithmica 63(1–2), 51–90 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aziz, H., Brandt, F., Seedig, H.G.: Computing desirable partitions in additively separable hedonic games. Artif. Intell. 195, 316–334 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Birnbaum, B., Devanur, N., Xiao, L.: Distributed algorithms via gradient descent for fisher markets. In: Proceedings of 12th Conference Electronic Commerce (EC), pp. 127–136 (2011)Google Scholar
  5. 5.
    Branzei, S., Larson, K.: Coalitional affinity games and the stability gap. In: Proceedings of 21st International Joint Conference on Artificial Intelligence (IJCAI), pp. 79–84 (2009)Google Scholar
  6. 6.
    Caragiannis, I., Voudouris, A.: Welfare guarantees for proportional allocations. Theory Comput. Syst. 59(4), 581–599 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cechlárova, K.: Stable partition problem. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp. 1–99. Springer, New York (2008)Google Scholar
  8. 8.
    Christodoulou, G., Sgouritsa, A., Tang, B.: On the efficiency of the proportional allocation mechanism for divisible resources. Theory Comput. Syst. 59(4), 600–618 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combinatorial optimization games. Math. Oper. Res. 24(3), 751–766 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dreze, J., Greenberg, J.: Hedonic coalitions: optimality and stability. Econometrica 48(4), 987–1003 (1980)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gairing, M., Savani, R.: Computing stable outcomes in hedonic games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 174–185. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16170-4_16CrossRefGoogle Scholar
  12. 12.
    Hajduková, J.: Coalition formation games: a survey. Int. Game Theory Rev. 8(4), 613–641 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Håstad, J.: Clique is hard to approximate within \(n^{1-\varepsilon }\). Acta Math. 182(1), 105–142 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hoefer, M., Wagner, L.: Designing profit shares in matching and coalition formation games. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 249–262. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45046-4_21CrossRefzbMATHGoogle Scholar
  15. 15.
    Johari, R., Tsitsiklis, J.: Efficiency loss in a resource allocation game. Math. Oper. Res. 29(3), 407–435 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kleinberg, J., Oren, S.: Mechanisms for (mis)allocating scientific credit. In: Proceedings of 43rd Symposium on Theory of Computing (STOC), pp. 529–538 (2011)Google Scholar
  17. 17.
    Peters, D.: Graphical hedonic games of bounded treewidth. In: Proceedings of 23rd Conference on Artificial Intelligence (AAAI), pp. 586–593 (2016)Google Scholar
  18. 18.
    Peters, D.: Towards structural tractability in hedonic games. In: Proceedings of 23rd Conference on Artificial Intelligence (AAAI), pp. 4252–4253 (2016)Google Scholar
  19. 19.
    Peters, D., Elkind, E.: Simple causes of complexity in hedonic games. In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI), pp. 617–623 (2015)Google Scholar
  20. 20.
    Shapley, L., Scarf, H.: On cores and indivisibility. J. Math. Econ. 1(1), 23–37 (1974)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sung, S.-C., Dimitrov, D.: Computational complexity in additive hedonic games. Eur. J. Oper. Res. 203(3), 635–639 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhang, L.: Proportional response dynamics in the fisher market. Theor. Comput. Sci. 412(24), 2691–2698 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for Computer ScienceGoethe University FrankfurtFrankfurtGermany
  2. 2.Department of Computer ScienceAalto UniversityEspooFinland

Personalised recommendations