Advertisement

Liquid Price of Anarchy

  • Yossi Azar
  • Michal Feldman
  • Nick Gravin
  • Alan RoytmanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10504)

Abstract

Incorporating budget constraints into the analysis of auctions has become increasingly important, as they model practical settings more accurately. The social welfare function, which is the standard measure of efficiency in auctions, is inadequate for settings with budgets, since there may be a large disconnect between the value a bidder derives from obtaining an item and what can be liquidated from her. The Liquid Welfare objective function has been suggested as a natural alternative for settings with budgets. Simple auctions, like simultaneous item auctions, are evaluated by their performance at equilibrium using the Price of Anarchy (PoA) measure – the ratio of the objective function value of the optimal outcome to the worst equilibrium. Accordingly, we evaluate the performance of simultaneous item auctions in budgeted settings by the Liquid Price of Anarchy (LPoA) measure – the ratio of the optimal Liquid Welfare to the Liquid Welfare obtained in the worst equilibrium.

For pure Nash equilibria of simultaneous first price auctions, we obtain a bound of 2 on the LPoA for additive buyers. Our results easily extend to the larger class of fractionally-subadditive valuations. Next we show that the LPoA of mixed Nash equilibria for first price auctions with additive bidders is bounded by a constant. Our proofs are robust, and can be extended to achieve similar bounds for Bayesian Nash equilibria. To derive our results, we develop a new technique in which some bidders deviate (surprisingly) toward a non-optimal solution. In particular, this technique goes beyond the smoothness-based approach.

References

  1. 1.
    Anari, N., Goel, G., Nikzad, A.: Mechanism design for crowdsourcing: an optimal 1–1/e competitive budget-feasible mechanism for large markets. In: FOCS, pp. 266–275 (2014)Google Scholar
  2. 2.
    Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. Am. Econ. Rev. 94(5), 1452–1475 (2004)CrossRefGoogle Scholar
  3. 3.
    Azar, Y., Feldman, M., Gravin, N., Roytman, A.: Liquid price of anarchy. CoRR abs/1511.01132 (2015)Google Scholar
  4. 4.
    Bei, X., Chen, N., Gravin, N., Lu, P.: Budget feasible mechanism design: From prior-free to bayesian. In: STOC, pp. 449–458 (2012)Google Scholar
  5. 5.
    Benoit, J.P., Krishna, V.: Multiple-object auctions with budget constrained bidders. Rev. Econ. Stud. 68(1), 155–179 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bhattacharya, S., Conitzer, V., Munagala, K., Xia, L.: Incentive compatible budget elicitation in multi-unit auctions. In: SODA, pp. 554–572 (2010)Google Scholar
  7. 7.
    Bhawalkar, K., Roughgarden, T.: Welfare guarantees for combinatorial auctions with item bidding. In: SODA, pp. 700–709 (2011)Google Scholar
  8. 8.
    Bhawalkar, K., Roughgarden, T.: Simultaneous single-item auctions. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 337–349. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35311-6_25CrossRefGoogle Scholar
  9. 9.
    Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., Saberi, A.: Multi-unit auctions with budget-constrained bidders. In: EC, pp. 44–51 (2005)Google Scholar
  10. 10.
    Cai, Y., Papadimitriou, C.: Simultaneous Bayesian auctions and computational complexity. In: EC, pp. 895–910 (2014)Google Scholar
  11. 11.
    Caragiannis, I., Voudouris, A.A.: Welfare guarantees for proportional allocations. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 206–217. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44803-8_18CrossRefGoogle Scholar
  12. 12.
    Chan, H., Chen, J.: Truthful multi-unit procurements with budgets. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 89–105. Springer, Cham (2014). doi: 10.1007/978-3-319-13129-0_7CrossRefGoogle Scholar
  13. 13.
    Chawla, S., Malec, D., Malekian, A.: Bayesian mechanism design for budget-constrained agents. In: EC, pp. 253–262 (2011)Google Scholar
  14. 14.
    Che, Y.K., Gale, I.: Standard auctions with financially constrained bidders. Rev. Econ. Stud. 65(1), 1–21 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, N., Gravin, N., Lu, P.: On the approximability of budget feasible mechanisms. In: SODA, pp. 685–699 (2011)Google Scholar
  16. 16.
    Christodoulou, G., Kovács, A., Schapira, M.: Bayesian combinatorial auctions. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 820–832. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70575-8_67CrossRefGoogle Scholar
  17. 17.
    Christodoulou, G., Kovács, A., Sgouritsa, A., Tang, B.: Tight bounds for the price of anarchy of simultaneous first price auctions. CoRR abs/1312.2371 (2013)Google Scholar
  18. 18.
    Christodoulou, G., Sgouritsa, A., Tang, B.: On the efficiency of the proportional allocation mechanism for divisible resources. In: Hoefer, M. (ed.) SAGT 2015. LNCS, vol. 9347, pp. 165–177. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48433-3_13CrossRefGoogle Scholar
  19. 19.
    Dobzinski, S., Fu, H., Kleinberg, R.: On the complexity of computing an equilibrium in combinatorial auctions. In: SODA, pp. 110–122 (2015)Google Scholar
  20. 20.
    Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits. In: FOCS, pp. 260–269 (2008)Google Scholar
  21. 21.
    Dobzinski, S., Leme, R.P.: Efficiency guarantees in auctions with budgets. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 392–404. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43948-7_33CrossRefGoogle Scholar
  22. 22.
    Dobzinski, S., Papadimitriou, C., Singer, Y.: Mechanisms for complement-free procurement. In: EC, pp. 273–282 (2011)Google Scholar
  23. 23.
    Dughmi, S., Eden, A., Feldman, M., Fiat, A., Leonardi, S.: Lottery pricing equilibria. In: EC, pp. 401–418 (2016)Google Scholar
  24. 24.
    Dütting, P., Henzinger, M., Starnberger, M.: Valuation compressions in VCG-based combinatorial auctions. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 146–159. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45046-4_13CrossRefGoogle Scholar
  25. 25.
    Feldman, M., Fu, H., Gravin, N., Lucier, B.: Simultaneous auctions are (almost) efficient. In: STOC, pp. 201–210 (2013)Google Scholar
  26. 26.
    Feldman, M., Gravin, N., Lucier, B.: Combinatorial walrasian equilibrium. In: STOC, pp. 61–70 (2013)Google Scholar
  27. 27.
    Hartline, J., Hoy, D., Taggart, S.: Price of anarchy for auction revenue. In: EC, pp. 693–710 (2014)Google Scholar
  28. 28.
    Hassidim, A., Kaplan, H., Mansour, Y., Nisan, N.: Non-price equilibria in markets of discrete goods. In: EC, pp. 295–296 (2011)Google Scholar
  29. 29.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). doi: 10.1007/3-540-49116-3_38CrossRefGoogle Scholar
  30. 30.
    Laffont, J.J., Robert, J.: Optimal auction with financially constrained buyers. Econ. Lett. 52(2), 181–186 (1996)CrossRefGoogle Scholar
  31. 31.
    Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55(2), 270–296 (2006)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lu, P., Xiao, T.: Improved efficiency guarantees in auctions with budgets. In: EC, pp. 397–413 (2015)Google Scholar
  33. 33.
    Malakhov, A., Vohra, R.V.: Optimal auctions for asymmetrically budget constrained bidders. Rev. Econ. Des. 12(4), 245–257 (2008)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Pai, M., Vohra, R.V.: Optimal auctions with financially constrained bidders. Discussion papers, Northwestern University, Center for Mathematical Studies in Economics and Management Science, August 2008Google Scholar
  35. 35.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: STOC, pp. 513–522 (2009)Google Scholar
  36. 36.
    Roughgarden, T., Tardos, E.: Introduction to the inefficiency of equilibria. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.) Algorithmic Game Theory. Cambridge University Press, New York (2007)zbMATHGoogle Scholar
  37. 37.
    Singer, Y.: Budget feasible mechanisms. In: FOCS, pp. 765–774 (2010)Google Scholar
  38. 38.
    Syrgkanis, V., Tardos, E.: Composable and efficient mechanisms. In: STOC, pp. 211–220 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yossi Azar
    • 1
  • Michal Feldman
    • 1
  • Nick Gravin
    • 2
  • Alan Roytman
    • 3
    Email author
  1. 1.Tel Aviv UniversityTel AvivIsrael
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.University of CopenhagenCopenhagenDenmark

Personalised recommendations