Reconsidering Different Visions of Scientific Literacy and Science Education Based on the Concept of Bildung

  • Jesper SjöströmEmail author
  • Ingo Eilks
Part of the Innovations in Science Education and Technology book series (ISET, volume 24)


Over the last 50 years, policy makers and STEM educators have argued for Scientific Literacy (SL). SL is a typical boundary object that everyone can agree on, but that is filled with different meanings by different stakeholders. Roberts (as published in Abell SK, Lederman NG (eds), Handbook of research on science education. Lawrence Erlbaum, Mahwah, pp. 729–780, 2007) has identified two main orientations of SL: Vision I starts from and focuses on scientific content and scientific processes to learn about corresponding applications later, while Vision II focuses on contextualizing scientific knowledge for giving its use in life and society meaning. The tension between Vision I and II can also be related to the tension between “pipeline science – preparing future scientists” and “science for all”. Recently, a more advanced vision of SL was suggested. It is called Vision III and emphasizes philosophical values, politicization and critical global citizenship education. Such an orientation can be well justified by the Central/Northern European educational and cultural tradition called Bildung. In its most contemporary understanding, it is agency-oriented. Bildung-oriented science education aims at making the student capable of a self-determined life in his/her socio-cultural environment, participation in a democratic society, and of empathy and solidarity with others. This concept is also closely connected to more recent educational paradigms that were defined also beyond Europe, e.g. the ideas of Education for Sustainability (EfS) and transformative learning. Both concepts aim on skills development for critical-democratic participation and for shaping our society and culture in a sustainable way. The different visions of SL have consequences for the content and culture of teaching and learning of science and technology. Accepting Vision III requires awareness that our view of selecting and teaching certain content is dependent on our culture, for example our norms, values and worldviews, and on the society we are living in. Learning (cognition) must be complemented with not only meta-learning (metacognition), but also transformative learning, where things are considered from multifaceted (e.g., cultural) perspectives. The discussion in this chapter focuses on educational implications of Vision III of SL and its connection to critical-reflexive Bildung, EfS and transformative learning.


  1. Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. New York: Teachers College Press.Google Scholar
  2. Aikenhead, G. S. (2007). Expanding the research agenda for scientific literacy. In C. Linder et al. (Eds.), Promoting scientific literacy: Science education research in transaction. Uppsala: Geotryckeriet.Google Scholar
  3. Albe, V. (2013). On the road to science education for sustainability? Cultural Studies of Science Education, 8(1), 185–192.CrossRefGoogle Scholar
  4. Albe, V. (2015). Science for citizenship. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 904–905). Dordrecht: Springer.CrossRefGoogle Scholar
  5. Avargil, S., Lavi, R., & Dori, Y. J. (2018). Students’ metacognition and metacognitive strategies in science education. In Y. J. Dori, Z. Mevareach, & D. Bake (Eds.), Cognition, metacognition and culture in STEM education (pp. 33–64). Springer.Google Scholar
  6. Bader, B., & Laberge, Y. (2014). Activism in science and environmental education: Renewing conceptions about science among students when considering socioscientific issues. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 419–433). Dordrecht: Springer.CrossRefGoogle Scholar
  7. Bauer, W. (2003). On the relevance of Bildung for democracy. Educational Philosophy and Theory, 35(2), 212–225.Google Scholar
  8. Bauer, M. W. (2009). The evolution of public understanding of science – discourse and comparative evidence. Science and Technology in Society, 14(2), 221–240.CrossRefGoogle Scholar
  9. Bencze, L., & Carter, L. (2011). Globalizing students acting for the common good. Journal of Research in Science Teaching, 48(6), 648–669.CrossRefGoogle Scholar
  10. Bencze, L., Sperling, E., & Carter, L. (2012). Students’ research-informed socio-scientific activism: Re/visions for a sustainable future. Research in Science Education, 42(1), 129–148.CrossRefGoogle Scholar
  11. Biesta, G. (2002a). Bildung and modernity: The future of Bildung in a world of difference. Studies in Philosophy and Education, 21(4–5), 343–351.CrossRefGoogle Scholar
  12. Biesta, G. (2002b). How general can Bildung be? Reflections on the future of a modern educational ideal. Journal of Philosophy of Education, 36(3), 377–390.CrossRefGoogle Scholar
  13. Biesta, G. (2012). Have lifelong learning and emancipation still something to say to each other? Studies in the Education of Adults, 44(1), 5–20.Google Scholar
  14. Birdsall, S. (2013). Reconstructing the relationship between science and education for sustainability: A proposed framework for learning. International Journal of Environmental and Science Education, 8(3), 451–478.Google Scholar
  15. Blades, D. (2008). Positive growth: Developments in the philosophy of science education. Curriculum Inquiry, 38(4), 387–399.CrossRefGoogle Scholar
  16. Bohlin, H. (2008). Bildung and moral self-cultivation in higher education: What does it mean and how can it be achieved? Forum on Public Policy Online, no 2/2008, Retrieved January 10, 2015 from
  17. Bohlin, H. (2009). Perspective-dependence and critical thinking. Argumentation, 23(2), 189–203.CrossRefGoogle Scholar
  18. Bohlin, H. (2013). Bildung and intercultural understanding. Intercultural Education, 24(5), 391–400.CrossRefGoogle Scholar
  19. Bowers, C. A. (2002). Toward an eco-justice pedagogy. Environmental Education Research, 8, 21–34.CrossRefGoogle Scholar
  20. Burman, A. (2011). Svar på frågan: Vad är medborgerlig bildning? [Answer on the question: What is civic-Bildung?]. In A. Burman (Ed.), Våga veta! Om bildningens möjligheter i massutbildningens tidevarv (pp. 9–31). Huddinge: Södertörns högskola. (in Swedish).Google Scholar
  21. Burman, A. (2014). Pedagogikens idéhistoria: Uppfostringsidéer och bildningsideal under 2500 år [History of pedagogy: Ideas of education and ideals of Bildung during 2500 years]. Lund: Studentlitteratur. (in Swedish).Google Scholar
  22. Burmeister, M., Rauch, F., & Eilks, I. (2012). Education for sustainable development (ESD) and secondary chemistry education. Chemistry Education Research and Practice, 13(2), 59–68.CrossRefGoogle Scholar
  23. Burns, D. P., & Norris, S. P. (2012). Activist environmental education and moral philosophy. Canadian Journal of Science, Mathematics and Technology Education, 12(4), 380–393.CrossRefGoogle Scholar
  24. Carter, L., Rodriguez, C. C., & Jones, M. (2014). Transformative learning in science education: Investigating pedagogy for action. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 531–545). Dordrecht: Springer.CrossRefGoogle Scholar
  25. Cho, S. (2010). Politics of critical pedagogy and new social movements. Educational Philosophy and Theory, 42(3), 310–325.CrossRefGoogle Scholar
  26. Christensen, C. (2009). Risk and school science education. Studies in Science Education, 45, 205–223.CrossRefGoogle Scholar
  27. Coll, R. K., & Taylor, N. (2009). Special issue on scientific literacy. International Journal of Enviromental and Science Education, 4, 197–349.Google Scholar
  28. Colucci-Gray, L., & Camino, E. (2014). From knowledge to action? Re-embedding science learning within the planet’s web. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 149–164). Dordrecht: Springer.CrossRefGoogle Scholar
  29. Colucci-Gray, L., Perazzone, A., Dodman, M., & Camino, E. (2013). Science education for sustainability, epistemological reflections and educational practices: From natural sciences to trans-disciplinarity. Cultural Studies of Science Education, 8(1), 127–183.CrossRefGoogle Scholar
  30. Cranton, P. (2011). A transformative perspective on the scholarship of teaching and learning. Higher Education Research & Development, 30(1), 75–86.CrossRefGoogle Scholar
  31. Crippen, K., & Antonenko, P. D. (2018). Designing for collaborative problem solving in STEM. In Y. J. Dori, Z. Mevarech, & D. Baker (Eds.), Cognition, metacognition, and culture in stem education (pp. 89–116). Springer.Google Scholar
  32. Dillon, J. (2014). Environmental education. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (2nd ed., pp. 497–514). New York: Routledge.Google Scholar
  33. Duit, R. (2015). Didaktik. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 325–327). The Netherlands: Springer.CrossRefGoogle Scholar
  34. Eilks, I., Rauch, F., Ralle, B., & Hofstein, A. (2013). How to allocate the chemistry curriculum between science and society. In I. Eilks & A. Hofstein (Eds.), Teaching chemistry – a studybook (pp. 1–36). Rotterdam: Sense.CrossRefGoogle Scholar
  35. Elmose, S., & Roth, W.-M. (2005). Allgemeinbildung: readiness for living in risk society. Journal of Curriculum Studies, 37(1), 11–34.CrossRefGoogle Scholar
  36. Feierabend, T., & Eilks, I. (2011). Teaching the societal dimension of chemistry using a socio-critical, problem-oriented lesson plan based on bioethanol usage. Journal of Chemical Education, 88(9), 1250–1256.CrossRefGoogle Scholar
  37. Fischler, H. (2011). Didaktik – an appropriate framework for the professional work of science teachers? In D. Corrigan, J. Dillon, & R. Gunstone (Eds.), The professional knowledge base of science teaching (pp. 31–50). Dordrecht: Springer.CrossRefGoogle Scholar
  38. Fischler, H. (2015). Bildung. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 118–122). Dordrecht: Springer.CrossRefGoogle Scholar
  39. Fleck, L. (1935; in English 1979). Entstehung und Entwicklung einer wissenschaftlichen Tatsache [The genesis and development of a scientific fact]. Frankfurt, Germany: Suhrkamp (in German).Google Scholar
  40. Fuller, S. (2002). Knowledge management foundations. Boston: Butterworth Heinemann.Google Scholar
  41. Garrard, G. (2010). Problems and prospects in ecocritical pedagogy. Environmental Education Research, 16(2), 233–245.CrossRefGoogle Scholar
  42. Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge – the dynamics of science and research in contemporary societies. London: SAGE.Google Scholar
  43. Gräber, W., & Bolte, C. (Eds.). (1997). Scientific literacy. Kiel: IPN.Google Scholar
  44. Gur–ze’ev, I. (2002). Bildung and critical theory facing postmodern education. Journal of Philosophy of Education, 36(3), 391–408.CrossRefGoogle Scholar
  45. Gustavsson, B. (2012). Bildningens traditioner i transformation [The traditions of Bildung in transformation]. In A. Burman & P. Sundgren (Eds.), Svenska bildningstraditioner (pp. 309–327). Göteborg: Daidalos. (in Swedish).Google Scholar
  46. Gustavsson, B. (2014a). Bildung and the road from a classical into a global and postcolonial concept. Confero: Essays on Education, Philosophy and Politics, 2(1), 109–131.CrossRefGoogle Scholar
  47. Gustavsson, B. (2014b). Bildning och kritiskt tänkande i teori och praktik [Bildung and critical thinking in theory and practice]. In A. Burman (Ed.), Att växa som människa – Om bildningens traditioner och praktiker (pp. 183–206). Huddinge: Södertörns högskola. (in Swedish).Google Scholar
  48. Hansen, K.-H. (2008). Rewriting Bildung for postmodernity: Books on educational philosophy, classroom practice, and reflective teaching. Curriculum Inquiry, 38, 93–115.CrossRefGoogle Scholar
  49. Hart, P. (2012). Creating spaces for rethinking school science: Perspectives from subjective and social-relational ways of knowing. In A. Zeyer & R. Kyburz-Graber (Eds.), Science|environment|health: Towards a renewed pedagogy for science education (pp. 103–125). Dordrecht: Springer.Google Scholar
  50. Hasslöf, H., & Malmberg, C. (2015). Critical thinking as room for subjectification in education for sustainable development. Environmental Education Research, 21(2), 239–255.CrossRefGoogle Scholar
  51. Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645–670.CrossRefGoogle Scholar
  52. Hodson, D. (2009). Teaching and learning about science: Language, theories, methods, history, traditions and values. Rotterdam: Sense.Google Scholar
  53. Hodson, D. (2011). Looking to the future: Building a curriculum for social activism. Rotterdam: Sense.CrossRefGoogle Scholar
  54. Hofstein, A., Eilks, I., & Bybee, R. (2011). Societal issues and their importance for contemporary science education: A pedagogical justification and the state of the art in Israel, Germany and the USA. International Journal of Science and Mathematics Education, 9(6), 1459–1483.CrossRefGoogle Scholar
  55. Hopmann, S. (2007). Restrained teaching: The common core of Didaktik. European Educational Research Journal, 6(2), 109–124.CrossRefGoogle Scholar
  56. Houwer, R. (2014). Hopeful practices: Activating and enacting the pedagogical and political potential in crises. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 113–125). Dordrecht: Springer.CrossRefGoogle Scholar
  57. Jickling, B., & Wals, A. E. J. (2008). Globalization and environmental education: Looking beyond sustainable development. Journal of Curriculum Studies, 40(1), 1–21.CrossRefGoogle Scholar
  58. Johnson, L., & Morris, P. (2010). Towards a framework for critical citizenship education. The Curriculum Journal, 21(1), 77–96.CrossRefGoogle Scholar
  59. Kansanen, P. (2009). Subject-matter didactics as a central knowledge base for teachers, or should it be called pedagogical content knowledge? Pedagogy Culture & Society, 17(1), 29–39.CrossRefGoogle Scholar
  60. Kemp, P. (2005; in English 2010). Världsmedborgaren: Politisk och pedagogisk filosofi för det 21 århundradet [Citizen of the world: Cosmopolitan ideals for the 21st century]. Göteborg, Sweden: Daidalos (in Swedish).Google Scholar
  61. Kivelä, A., Siljander, P., & Sutinen, A. (2012). Between Bildung and growth: Connections and controversies. In P. Siljander, A. Kivelä, & A. Sutinen (Eds.), Theories of Bildung and growth (pp. 303–312). Rotterdam: Sense.CrossRefGoogle Scholar
  62. Klafki, W. (2000a). The significance of classical theories of Bildung for a contemporary concept of Allgemeinbildung. In I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice: The German Didaktik tradition (pp. 85–108). Mahwah: Lawrence Erlbaum.Google Scholar
  63. Klafki, W. (2000b). Didaktik analysis as the core for preparation of instruction. In I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice: The German Didaktik tradition (pp. 139–160). Mahwah: Lawrence Erlbaum.Google Scholar
  64. Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71–94.CrossRefGoogle Scholar
  65. Littledyke, M. (2008). Science education for environmental awareness: Approaches to integrating cognitive and affective domains. Environmental Education Research, 14(1), 1–17.CrossRefGoogle Scholar
  66. Liu, X. (2013). Expanding notions of scientific literacy: A reconceptualization of aims of science education in the knowledge society. In N. Mansour & R. Wegerif (Eds.), Science education for diversity – Theory and practice (pp. 23–39). Dordrecht: Springer.CrossRefGoogle Scholar
  67. Løvlie, L., & Standish, P. (2002). Introduction: Bildung and the idea of a liberal education. Journal of Philosophy of Education, 36(3), 317–340.CrossRefGoogle Scholar
  68. Løvlie, L., Mortensen, K. P., & Nordenbo, S. E. (eds.) (2003). Educating humanity – Bildung in postmodernity. Malden, MA: Blackwell Publishing (first published in 2002 as volume 36, issue 3 of the Journal of Philosophy of Education).Google Scholar
  69. Lundqvist, E., Säljö, R., & Östman, L. (Eds.). (2013). Scientific literacy – teori och praktik [scientific literacy – theory and practice]. Malmö: Gleerups. (in Swedish).Google Scholar
  70. Marks, R., & Eilks, I. (2009). Promoting scientific literacy using a socio-critical and problem-oriented approach to chemistry teaching: Concept, examples, experiences. International Journal of Environmental and Science Education, 4(3), 231–245.Google Scholar
  71. Marks, R., Stuckey, M., Belova, N., & Eilks, I. (2014). The societal dimension in German science education – from tradition towards selected cases and recent developments. Eurasia Journal of Mathematics, Science & Technology Education, 10, 285–296.CrossRefGoogle Scholar
  72. Mezirow, J. (1997). Transformative learning: Theory to practice. New Directions for Adult and Continuing Education, 74, 5–12.CrossRefGoogle Scholar
  73. Mogensen, F., & Schnack, K. (2010). The action competence approach and the ‘new’ discourses of education for sustainable development, competence and quality criteria. Environmental Education Research, 16(1), 59–74.CrossRefGoogle Scholar
  74. Morin, O., Simonneaux, L., Simonneaux, J., Tytler, R., & Barraza, L. (2014). Developing and using an S3R model to analyze reasoning in web-based cross-national exchanges on sustainability. Science Education, 98(3), 517–542.CrossRefGoogle Scholar
  75. Mueller, M. P. (2009). Educational reflections on the “ecological crisis”: Ecojustice, environmentalism, and sustainability. Science & Education, 18(8), 1031–1056.CrossRefGoogle Scholar
  76. Pedretti, E., & Nazir, J. (2011). Currents in STSE education: Mapping a complex field, 40 years on. Science Education, 95(4), 601–626.CrossRefGoogle Scholar
  77. Reis, P. (2014). Promoting students’ collective socio-scientific activism: Teachers’ perspectives. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 547–574). Dordrecht: Springer.CrossRefGoogle Scholar
  78. Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah: Lawrence Erlbaum.Google Scholar
  79. Roberts, D. A. (2011). Competing visions of scientific literacy: The influence of a science curriculum policy image. In C. Linder, L. Östman, D. A. Roberts, P.-O. Wickman, G. Erickson, & A. MacKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 11–27). London: Routledge.Google Scholar
  80. Roberts, D. A., & Bybee, R. W. (2014). Scientific literacy, science literacy, and science education. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (2nd ed., pp. 545–558). New York: Routledge.Google Scholar
  81. Sadler, T. D. (2011). Socio-scientific issues in the classroom. Dordrecht: Springer.CrossRefGoogle Scholar
  82. Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909–921.CrossRefGoogle Scholar
  83. Santos, W. L. P. (2009). Scientific literacy: A Freirean perspective as a radical view of humanistic science education. Science Education, 93(2), 361–382.CrossRefGoogle Scholar
  84. Schaffar, B., & Uljens, M. (2015). Paradoxical tensions between Bildung and Ausbildung in academia: Moving within or beyond the modern continental tradition. In E. Westergaard & J. S. Wiewiura (Eds.), On the facilitation of the academy (pp. 1–15). Rotterdam: Sense.Google Scholar
  85. Schneider, K. (2012). The subject-object transformations and ‘Bildung’. Educational Philosophy and Theory, 44(3), 302–311.CrossRefGoogle Scholar
  86. Selby, D. E. (2014). Education for sustainable contraction as appropriate response to global heating. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 165–182). Dordrecht: Springer.CrossRefGoogle Scholar
  87. Shor, I. (1992). Empowering education: Critical teaching for social change. Chicago: University of Chicago Press.Google Scholar
  88. Simonneaux, L. (2014a). Questions socialement vives and socio-scientific issues: New trends of research to meet the training needs of postmodern society. In C. Bruguère, A. Tiberghien, & P. Clement (Eds.), Topics and trends in current science education (pp. 37–54). Dordrecht: Springer.CrossRefGoogle Scholar
  89. Simonneaux, L. (2014b). From promoting the techno-sciences to activism – a variety of objectives involved in the teaching of SSIs. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 99–111). Dordrecht: Springer.CrossRefGoogle Scholar
  90. Simonneaux, J., & Simonneaux, L. (2012). Educational configurations for teaching environmental socioscientific issues within the perspective of sustainability. Research in Science Education, 42(1), 75–94.CrossRefGoogle Scholar
  91. Sjöström, J. (2013a). Towards Bildung-oriented chemistry education. Science & Education, 22(7), 1873–1890.CrossRefGoogle Scholar
  92. Sjöström, J. (2013b). Eco-driven chemical research in the boundary between academia and industry – PhD students’ views on science and society. Science & Education, 22(10), 2427–2441.CrossRefGoogle Scholar
  93. Sjöström, J., & Stenborg, E. (2014). Teaching and learning for critical scientific literacy: Communicating knowledge uncertainties, actors interplay and various discourses about chemicals. In I. Eilks, S. Markic, & B. Ralle (Eds.), Science education research and education for sustainable development (pp. 37–48). Aachen: Shaker.Google Scholar
  94. Sjöström, J., & Talanquer, V. (2014). Humanizing chemistry education: From simple contextualization to multifaceted problematization. Journal of Chemical Education, 91(8), 1125–1131.CrossRefGoogle Scholar
  95. Sjöström, J., Rauch, F., & Eilks, I. (2015). Chemistry education for sustainability. In I. Eilks & A. Hofstein (Eds.), Relevant chemistry education – from theory to practice (pp. 163–184). Rotterdam: Sense.Google Scholar
  96. Sjöström, J., Eilks, I., & Zuin, V. (2016). Towards eco-reflexive science education – A critical reflection about educational implications of green chemistry. Science & Education, 25(3–4), 321–341.CrossRefGoogle Scholar
  97. Smith, D. V., & Gunstone, R. F. (2009). Science curriculum in the market liberal society of the twenty-first century: ‘re-visioning’ the idea of science for all. Research in Science Education, 39(1), 1–16.CrossRefGoogle Scholar
  98. Sterling, S. (2011). Transformative learning and sustainability: Sketching the conceptual ground. Learning and Teaching in Higher Education, 5(11), 17–33.Google Scholar
  99. Straume, I. S. (2015). The subject and the world: Educational challenges. Educational Philosophy and Theory, 47(13–14), 1465–1476.CrossRefGoogle Scholar
  100. Stuckey, M., Heering, P., Mamlok-Naaman, R., Hofstein, A., & Eilks, I. (2015). The philosophical works of Ludwik Fleck and their potential meaning for teaching and learning science. Science & Education, 24(3), 281–298.CrossRefGoogle Scholar
  101. Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‚relevance‘ in science education and its implications for the science curriculum. Studies in Science Education, 49, 1–34.Google Scholar
  102. Thomas, I. (2009). Critical thinking, transformative learning, sustainable education, and problem-based learning in universities. Journal of Transformative Education, 7(3), 245–264.CrossRefGoogle Scholar
  103. Väkevä, L. (2012). Experiencing growth as a natural phenomenon: John Dewey’s philosophy and the Bildung tradition. In P. Siljander, A. Kivelä, & A. Sutinen (Eds.), Theories of Bildung and growth (pp. 261–279). Rotterdam: Sense.CrossRefGoogle Scholar
  104. Vieira, R. M., Tenreiro-Vieira, C., & Martins, I. P. (2011). Critical thinking: Conceptual clarification and its importance in science education. Science Education International, 22, 43–54.Google Scholar
  105. Von Humboldt, W. (2000). Theory of Bildung. In I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice: The German Didaktik tradition (pp. 57–62). Mahwah: Lawrence Erlbaum.Google Scholar
  106. Wals, A. (2015). Transformative learning in vital coalitions for socio-ecological sustainability. Retrieved January 10, 2015, from
  107. Walters, K. S. (Ed.). (1994). Re-thinking reason. New perspectives in critical thinking. New York: State University of New York Press.Google Scholar
  108. Westbury, I., Hopmann, S., & Riquarts, K. (Eds.). (2000). Teaching as a reflective practice: The German Didaktik tradition. Mahwah: Lawrence Erlbaum.Google Scholar
  109. Wickman, P. O., Liberg, C., & Östman, L. (2012). Transcending science: Scientific literacy and Bildung for the 21st century. In D. Jorde & J. Dillon (Eds.), Science education research and practice in Europe (pp. 39–61). Rotterdam: Sense.CrossRefGoogle Scholar
  110. Wimmer, M. (2003). Ruins of Bildung in a knowledge society: Commenting on the debate about future of Bildung. Educational Philosophy and Theory, 35(2), 167–187.CrossRefGoogle Scholar
  111. Yore, L. D. (2012). Science literacy for all: More than a slogan, logo, or rally flag! In K. C. D. Tan & M. Kim (Eds.), Issues and challenges in science education research (pp. 5–23). Dordrecht: Springer.CrossRefGoogle Scholar
  112. Zeidler, D. (2015). Socioscientific issues. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 998–1003). Dordrecht: Springer.CrossRefGoogle Scholar
  113. Zembylas, M. (2006). Science education as emancipatory: The case of Roy Bhaskar’s philosophy of meta-reality. Educational Philosophy and Theory, 38(5), 665–676.CrossRefGoogle Scholar
  114. Zoller, U. (2012). Science education for global sustainability: What is necessary for teaching, learning, and assessment strategies? Journal of Chemical Education, 89, 297–300.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Science-Environment-Society, Faculty of Education and SocietyMalmö UniversityMalmöSweden
  2. 2.Institute for Science Education, Department of Biology and ChemistryUniversity of BremenBremenGermany

Personalised recommendations