Proprioception After Spine Injury and Surgery

Chapter

Abstract

Proprioception is one of the components of somatosensory system and is essential for postural stabilization, movement acuity, and balance. Spinal proprioception has a specific significance on postural control due to cervical proprioception’s unique interactions with visio-vestibular system, and trunk’s role on dynamic and static stabilization of the body. Spinal proprioception can be disrupted as a result of trauma, pain disorders, stenosis, deformities, and/or spinal surgery.

Clinical assessment of proprioception includes specific measurements of kinesthesia, joint position sense, and force sense, as well as nonspecific measurements of the balance of the body.

Altered proprioception leads to poor balance, decrease in motor precision, increased risk of trauma, impaired head and eye movement control, and in the long term musculoskeletal disturbances. Management of proprioceptive disturbances includes physical therapies such as joint position exercises, oculo-cervical programming, and vibration training. Although spinal surgery is considered an etiological factor in proprioception disturbances, surgical restoration of spinal proprioception is also a subject currently under investigation.

Keywords

Proprioception Spinal surgery Balance Kinesthesia Spine Somatosensory system 

References

  1. 1.
    Roijezon U, Clark NC, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 1: basic science and principles of assessment and clinical interventions. Man Ther. 2015;20(3):368–77.CrossRefPubMedGoogle Scholar
  2. 2.
    Parkhurst TM, Burnett CN. Injury and proprioception in the lower back. J Orthop Sports Phys Ther. 1994;19(5):282–95.CrossRefPubMedGoogle Scholar
  3. 3.
    Karakaya MG. Spine and proprioception. In: Kaya D. Ed., Proprioception: The forgetten sixth sense. USA: OMICS Group eBooks; 2016. pp. 89–105. ISBN: 978-1-63278-018-8.Google Scholar
  4. 4.
    Assaiante C, Barlaam F, Cignetti F, Vaugoyeau M. Body schema building during childhood and adolescence: a neurosensory approach. Neurophysiol Clin. 2014;44(1):3–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Le Berre M, Guyot MA, Agnani O, Bourdeauducq I, Versyp MC, Donze C, et al. Clinical balance tests, proprioceptive system and adolescent idiopathic scoliosis. Eur Spine J. 2017;26(6):1638–44.CrossRefPubMedGoogle Scholar
  6. 6.
    Bronstein AM. Multisensory integration in balance control. Handbook Clin Neurol. 2016;137:57–66.CrossRefGoogle Scholar
  7. 7.
    Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92(4):1651–97.CrossRefPubMedGoogle Scholar
  8. 8.
    Liu JX, Thornell LE, Pedrosa-Domellof F. Muscle spindles in the deep muscles of the human neck: a morphological and immunocytochemical study. J Histochem Cytochem. 2003;51(2):175–86.CrossRefPubMedGoogle Scholar
  9. 9.
    Sojka P, Johansson H, Sjölander P, Lorentzon R, Djupsjöbacka M. Fusimotor neurones can be reflexly influenced by activity in receptor afferents from the posterior cruciate ligament. Brain Res. 1989;483(1):177–83.CrossRefPubMedGoogle Scholar
  10. 10.
    Needle AR, Charles BBS, Farquhar WB, Thomas SJ, Rose WC, Kaminski TW. Muscle spindle traffic in functionally unstable ankles during ligamentous stress. J Athl Train. 2013;48(2):192–202.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cordo PJ, Horn JL, Kunster D, Cherry A, Bratt A, Gurfinkel V. Contributions of skin and muscle afferent input to movement sense in the human hand. J Neurophysiol. 2011;105(4):1879–88.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Barbieri G, Gissot AS, Fouque F, Casillas JM, Pozzo T, Perennou D. Does proprioception contribute to the sense of verticality? Exp Brain Res. 2008;185(4):545–52.CrossRefPubMedGoogle Scholar
  13. 13.
    von Gierke HE, Parker DE. Differences in otolith and abdominal viscera graviceptor dynamics: implications for motion sickness and perceived body position. Aviat Space Environ Med. 1994;65(8):747–51.Google Scholar
  14. 14.
    McLain RF, Raiszadeh K. Mechanoreceptor endings of the cervical, thoracic, and lumbar spine. Iowa Orthop J. 1995;15:147–55.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hobbs AJ, Adams RD, Shirley D, Hillier TM. Comparison of lumbar proprioception as measured in unrestrained standing in individuals with disc replacement, with low back pain, and without low back pain. J Orthop Sports Phys Ther. 2010;40(7):439–46.CrossRefPubMedGoogle Scholar
  16. 16.
    Holm S, Indahl A, Solomonow M. Sensorimotor control of the spine. J Electromyogr Kinesiol. 2002;12(3):219–34.CrossRefPubMedGoogle Scholar
  17. 17.
    Stubbs M, Harris M, Solomonow M, Zhou B, Lu Y, Baratta RV. Ligamento-muscular protective reflex in the lumbar spine of the feline. J Electromyogr Kinesiol. 1998;8(4):197–204.CrossRefPubMedGoogle Scholar
  18. 18.
    Allison GT, Fukushima S. Estimating three-dimensional spinal repositioning error: the impact of range, posture, and number of trials. Spine (Phila Pa 1976). 2003;28(22):2510–6.CrossRefGoogle Scholar
  19. 19.
    Lee AS, Cholewicki J, Reeves NP, Zazulak BT, Mysliwiec LW. Comparison of trunk proprioception between patients with low back pain and healthy controls. Arch Phys Med Rehabil. 2010;91(9):1327–31.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Clark NC, Roijezon U, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 2: clinical assessment and intervention. Man Ther. 2015;20(3):378–87.CrossRefPubMedGoogle Scholar
  21. 21.
    Guyot MA, Agnani O, Peyrodie L, Samantha D, Donze C, Catanzariti JF. Cervicocephalic relocation test to evaluate cervical proprioception in adolescent idiopathic scoliosis. Eur Spine J. 2016;25(10):3130–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Mallau S, Bollini G, Jouve JL, Assaiante C. Locomotor skills and balance strategies in adolescents idiopathic scoliosis. Spine (Phila Pa 1976). 2007;32(1):E14–22.CrossRefGoogle Scholar
  23. 23.
    Revel M, Andre-Deshays C, Minguet M. Cervicocephalic kinesthetic sensibility in patients with cervical pain. Arch Phys Med Rehabil. 1991;72(5):288–91.PubMedGoogle Scholar
  24. 24.
    Pinsault N, Fleury A, Virone G, Bouvier B, Vaillant J, Vuillerme N. Test-retest reliability of cervicocephalic relocation test to neutral head position. Physiother Theory Pract. 2008;24(5):380–91.CrossRefPubMedGoogle Scholar
  25. 25.
    Treleaven J. Sensorimotor disturbances in neck disorders affecting postural stability, head and eye movement control. Man Ther. 2008;13(1):2–11.CrossRefPubMedGoogle Scholar
  26. 26.
    Boucher JA, Roy N, Preuss R, Lariviere C. The effect of two lumbar belt designs on trunk repositioning sense in people with and without low back pain. Ann Phys Rehabil Med. 2017;60(5):306–11.CrossRefPubMedGoogle Scholar
  27. 27.
    Boucher JA, Preuss R, Henry SM, Dumas JP, Lariviere C. The effects of an 8-week stabilization exercise program on lumbar movement sense in patients with low back pain. BMC Musculoskelet Disord. 2016;17:23.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kristjansson E, Hardardottir L, Asmundardottir M, Gudmundsson K. A new clinical test for cervicocephalic kinesthetic sensibility: “the fly”. Arch Phys Med Rehabil. 2004;85(3):490–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Jull GA. Deep cervical flexor muscle dysfunction in whiplash. J Musculoskelet Pain. 2010;8(1–2):143–54.Google Scholar
  30. 30.
    Honaker JA, Boismier TE, Shepard NP, Shepard NT. Fukuda stepping test: sensitivity and specificity. J Am Acad Audiol. 2009;20(5):311–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Courtine G, De Nunzio AM, Schmid M, Beretta MV, Schieppati M. Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans. J Neurophysiol. 2007;97(1):772–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Simoneau M, Richer N, Mercier P, Allard P, Teasdale N. Sensory deprivation and balance control in idiopathic scoliosis adolescent. Exp Brain Res. 2006;170(4):576–82.CrossRefPubMedGoogle Scholar
  33. 33.
    Kaariainen T, Taimela S, Aalto T, Kroger H, Herno A, Turunen V, et al. The effect of decompressive surgery on lumbar paraspinal and biceps brachii muscle function and movement perception in lumbar spinal stenosis: a 2-year follow-up. Eur Spine J. 2016;25(3):789–94.CrossRefPubMedGoogle Scholar
  34. 34.
    Alghadir A, Zafar H, Iqbal Z, Al-Eisa E. Effect of sitting postures and shoulder position on the cervicocephalic kinesthesia in healthy young males. Somatosens Mot Res. 2016;33(2):93–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Malmstrom EM, Westergren H, Fransson PA, Karlberg M, Magnusson M. Experimentally induced deep cervical muscle pain distorts head on trunk orientation. Eur J Appl Physiol. 2013;113(10):2487–99.CrossRefPubMedGoogle Scholar
  36. 36.
    Claeys K, Brumagne S, Dankaerts W, Kiers H, Janssens L. Decreased variability in postural control strategies in young people with non-specific low back pain is associated with altered proprioceptive reweighting. Eur J Appl Physiol. 2011;111(1):115–23.CrossRefPubMedGoogle Scholar
  37. 37.
    Brumagne S, Cordo P, Lysens R, Verschueren S, Swinnen S. The role of paraspinal muscle spindles in lumbosacral position sense in individuals with and without low back pain. Spine (Phila Pa 1976). 2000;25(8):989–94.CrossRefGoogle Scholar
  38. 38.
    Ozcan-Eksi EE, Yagci I, Erkal H, Demir-Deviren S. Paraspinal muscle denervation and balance impairment in lumbar spinal stenosis. Muscle Nerve. 2016;53(3):422–30.CrossRefPubMedGoogle Scholar
  39. 39.
    Leinonen V, Maatta S, Taimela S, Herno A, Kankaanpaa M, Partanen J, et al. Impaired lumbar movement perception in association with postural stability and motor- and somatosensory-evoked potentials in lumbar spinal stenosis. Spine (Phila Pa 1976). 2002;27(9):975–83.CrossRefGoogle Scholar
  40. 40.
    Oddsdottir GL, Kristjansson E. Two different courses of impaired cervical kinaesthesia following a whiplash injury. A one-year prospective study. Man Ther. 2012;17(1):60–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Hides JA, Franettovich Smith MM, Mendis MD, Smith NA, Cooper AJ, Treleaven J, et al. A prospective investigation of changes in the sensorimotor system following sports concussion. An exploratory study. Musculoskelet Sci Pract. 2017;29:7–19.CrossRefPubMedGoogle Scholar
  42. 42.
    Kristjansson E, Bjornsdottir SV, Oddsdottir GL. The long-term course of deficient cervical kinaesthesia following a whiplash injury has a tendency to seek a physiological homeostasis. A prospective study. Man Ther. 2016;22:196–201.CrossRefPubMedGoogle Scholar
  43. 43.
    Barrack RL, Wyatt MP, Whitecloud TS, Burke SW, Roberts JM, Brinker MR. Vibratory hypersensitivity in idiopathic scoliosis. J Pediatr Orthop. 1998;8:389–95.CrossRefGoogle Scholar
  44. 44.
    Assaiante C, Mallau S, Jouve JL, Bollini G, Vaugoyeau M. Do adolescent idiopathic scoliosis [AIS] neglect proprioceptive information in sensory integration of postural control? PLoS One. 2012;7(7):e40646.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Janssens L, Brumagne S, Claeys K, Pijnenburg M, Goossens N, Rummens S, et al. Proprioceptive use and sit-to-stand-to-sit after lumbar microdiscectomy: the effect of surgical approach and early physiotherapy. Clin Biomech (Bristol, Avon). 2016;32:40–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MedicineAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkey
  2. 2.Department of Orthopedics and Traumatology, School of MedicineAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkey

Personalised recommendations